Zobrazeno 1 - 10
of 91
pro vyhledávání: '"Hinne M"'
Publikováno v:
In Computers in Human Behavior August 2023 145
In structural brain networks the connections of interest consist of white-matter fibre bundles between spatially segregated brain regions. The presence, location and orientation of these white matter tracts can be derived using diffusion MRI in combi
Externí odkaz:
http://arxiv.org/abs/1202.1696
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Autor:
Dingemans, A.J.M., Hinne, M., Jansen, S, Reeuwijk, J. van, Leeuw, N. de, Pfundt, R.P., Bon, B.W.M. van, Vulto-van Silfhout, A.T., Kleefstra, T., Koolen, D.A., Gerven, M.A.J. van, Vissers, L.E.L.M., Vries, L.B.A. de
Publikováno v:
European Journal of Human Genetics, 30, 506
European Journal of Human Genetics, 30, 1, pp. 506
European Journal of Human Genetics, 30, 1, pp. 506
Contains fulltext : 249711.pdf (Publisher’s version ) (Closed access) 1 p.
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=dedup_wf_001::99b4bd73ad1d5b2f3f696ee9ee377d61
http://hdl.handle.net/2066/249711
http://hdl.handle.net/2066/249711
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Autor:
Ambrogioni, L., Ebel, P.W., Hinne, M., Güçlü, U., Gerven, M.A.J. van, Maris, E.G.G., Chaudhuri, K., Sugiyama, M.
Publikováno v:
Chaudhuri, K.; Sugiyama, M. (ed.), Proceedings of the 22nd International Conference on Artificial Intelligence and Statistics (AISTATS) 2019, pp. 787-795
Chaudhuri, K.; Sugiyama, M. (ed.), Proceedings of the 22nd International Conference on Artificial Intelligence and Statistics (AISTATS) 2019, 787-795. [S.l.] : [S.n.]
STARTPAGE=787;ENDPAGE=795;ISSN=2640-3498;TITLE=Chaudhuri, K.; Sugiyama, M. (ed.), Proceedings of the 22nd International Conference on Artificial Intelligence and Statistics (AISTATS) 2019
Chaudhuri, K.; Sugiyama, M. (ed.), Proceedings of the 22nd International Conference on Artificial Intelligence and Statistics (AISTATS) 2019, 787-795. [S.l.] : [S.n.]
STARTPAGE=787;ENDPAGE=795;ISSN=2640-3498;TITLE=Chaudhuri, K.; Sugiyama, M. (ed.), Proceedings of the 22nd International Conference on Artificial Intelligence and Statistics (AISTATS) 2019
Item does not contain fulltext In this paper we introduce a semi-analytic variational framework for approximating the posterior of a Gaussian processes coupled through non-linear emission models. While the semi-analytic method can be applied to a lar
Autor:
Ambrogioni, L., Lin, K., Fertig, E., Vikram, S., Hinne, M., Moore, D., Gerven, M.A.J. van, Banerjee, A., Fukumizu, K.
Publikováno v:
Banerjee, A.; Fukumizu, K. (ed.), Proceedings of The 24th International Conference on Artificial Intelligence and Statistics (Vol. 130), 676-684. Brooklyn : Microtome Publishing
STARTPAGE=676;ENDPAGE=684;TITLE=Banerjee, A.; Fukumizu, K. (ed.), Proceedings of The 24th International Conference on Artificial Intelligence and Statistics (Vol. 130)
STARTPAGE=676;ENDPAGE=684;TITLE=Banerjee, A.; Fukumizu, K. (ed.), Proceedings of The 24th International Conference on Artificial Intelligence and Statistics (Vol. 130)
Stochastic variational inference offers an attractive option as a default method for differentiable probabilistic programming. However, the performance of the variational approach depends on the choice of an appropriate variational family. Here, we i
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=dedup_wf_001::edaab0d95ee52e39bb8f78681a4ae284
http://hdl.handle.net/2066/233662
http://hdl.handle.net/2066/233662
Autor:
Leeftink, H.D.F., Hinne, M., Alsentzer, E., McDermott, M.B.A., Falck, F., Sarkar, S.K., Roy, S., Hyland, S.L.
Publikováno v:
Alsentzer, E.; McDermott, M.B.A.; Falck, F. (ed.), Proceedings of the Machine Learning for Health NeurIPS Workshop, pp. 213-225
Alsentzer, E.; McDermott, M.B.A.; Falck, F. (ed.), Proceedings of the Machine Learning for Health NeurIPS Workshop, 213-225. S.l. : PMLR
STARTPAGE=213;ENDPAGE=225;ISSN=2640-3498;TITLE=Alsentzer, E.; McDermott, M.B.A.; Falck, F. (ed.), Proceedings of the Machine Learning for Health NeurIPS Workshop
Alsentzer, E.; McDermott, M.B.A.; Falck, F. (ed.), Proceedings of the Machine Learning for Health NeurIPS Workshop, 213-225. S.l. : PMLR
STARTPAGE=213;ENDPAGE=225;ISSN=2640-3498;TITLE=Alsentzer, E.; McDermott, M.B.A.; Falck, F. (ed.), Proceedings of the Machine Learning for Health NeurIPS Workshop
Item does not contain fulltext Quasi-experimental designs allow researchers to determine the effect of a treatment, even when randomized controlled trials are infeasible. A prominent example is interrupted time series (ITS) design, in which the effec
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=dedup_wf_001::ecf0ae472df311998d612bfe762fa6a3
https://hdl.handle.net/2066/227234
https://hdl.handle.net/2066/227234
Autor:
Dallaire, P., Ambrogioni, L., Trottier, L., Güçlü, U., Hinne, M., Giguère, P., Brahim Chaib-draa, Gerven, M., Laviolette, F.
Publikováno v:
Proceedings of Machine Learning Research, 124, 600-608
Proceedings of Machine Learning Research, 124, pp. 600-608
Scopus-Elsevier
Proceedings of Machine Learning Research, 124, pp. 600-608
Scopus-Elsevier
Contains fulltext : 221873.pdf (Publisher’s version ) (Open Access) This paper introduces the Indian chefs process (ICP) as a Bayesian nonparametric prior on the joint space of infinite directed acyclic graphs (DAGs) and orders that generalizes the
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::b9302c92a2831bcf8f85a733971021c5
http://hdl.handle.net/2066/221873
http://hdl.handle.net/2066/221873
Mental imagery and visual perception rely on similar neural mechanisms, but the function of this overlap remains unclear. One idea is that imagery can influence perception. Previous research has shown that imagining a stimulus prior to binocular pres
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::224b0727c425bb3605c853e98ae81479
https://doi.org/10.1101/607770
https://doi.org/10.1101/607770