Zobrazeno 1 - 10
of 30
pro vyhledávání: '"Hingston, Nancy"'
Publikováno v:
J. Fixed Point Theory Appl. 25, 59 (2023)
By a well-known theorem of Viterbo, the symplectic homology of the cotangent bundle of a closed manifold is isomorphic to the homology of its loop space. In this paper we extend the scope of this isomorphism in several directions. First, we give a di
Externí odkaz:
http://arxiv.org/abs/2008.13168
We show that Rabinowitz Floer homology and cohomology carry the structure of a graded Frobenius algebra for both closed and open strings. We prove a Poincar\'e duality theorem between homology and cohomology that preserves this structure. This lifts
Externí odkaz:
http://arxiv.org/abs/2008.13161
Autor:
Hingston, Nancy, Wahl, Nathalie
Let M be a closed Riemannian manifold. We extend the product of Goresky-Hingston, on the cohomology of the free loop space of M relative to the constant loops, to a nonrelative product. It is graded associative and commutative, and compatible with th
Externí odkaz:
http://arxiv.org/abs/1709.06839
Autor:
Hingston, Nancy, Oancea, Alexandru
We compute the integral homology of the space of paths in $\mathbb{C}P^n$ with endpoints in $\mathbb{R}P^n$, $n \ge 1$ and its algebra structure with respect to the Pontryagin-Chas-Sullivan product with $\mathbb{Z}/2$-coefficients.
Comment: 33 p
Comment: 33 p
Externí odkaz:
http://arxiv.org/abs/1311.7292
Autor:
Hingston, Nancy, Rademacher, Hans-Bert
A Riemannian or Finsler metric on a compact manifold M gives rise to a length function on the free loop space \Lambda M, whose critical points are the closed geodesics in the given metric. If X is a homology class on \Lambda M, the minimax critical l
Externí odkaz:
http://arxiv.org/abs/1105.0783
Autor:
Goresky, Mark, Hingston, Nancy
Publikováno v:
Duke Math. J. 150, no. 1 (2009), 117-209
We show the Chas-Sullivan product (on the homology of the free loop space of a Riemannian manifold) is related to the Morse index of its closed geodesics. We construct related products in the cohomology of the free loop space and of the based loop sp
Externí odkaz:
http://arxiv.org/abs/0707.3486
Autor:
Colding, Tobias H., Hingston, Nancy
On any surface we give an example of a metric that contains simple closed geodesics with arbitrary high Morse index. Similarly, on any 3-manifold we give an example of a metric that contains embedded minimal tori with arbitrary high Morse index. Prev
Externí odkaz:
http://arxiv.org/abs/math/0210290
Autor:
Colding, Tobias H., Hingston, Nancy
We give in this paper bounds for the Morse indices of a large class of simple geodesics on a surface with a generic metric. To our knowledge these bounds are the first that use only the generic hypothesis on the metric.
Externí odkaz:
http://arxiv.org/abs/math/0208133
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Autor:
Hingston, Nancy
Publikováno v:
Transactions of the American Mathematical Society, 1998 Mar 01. 350(3), 1129-1141.
Externí odkaz:
https://www.jstor.org/stable/117592