Zobrazeno 1 - 10
of 4 782
pro vyhledávání: '"Hillar A"'
Autor:
Pilli, Toivo (AUTHOR)
Publikováno v:
Theological Journal / Usuteaduslik Ajakiri. 2010, Vol. 61 Issue 2, p77-97. 21p.
An important problem in signal processing and deep learning is to achieve \textit{invariance} to nuisance factors not relevant for the task. Since many of these factors are describable as the action of a group $G$ (e.g. rotations, translations, scali
Externí odkaz:
http://arxiv.org/abs/2407.07655
Autor:
Przymuszała, Beata
Publikováno v:
Poznańskie Studia Polonistyczne. Seria Literacka / Poznań Polish Studies. Literary Series. (32):129-141
Externí odkaz:
https://www.ceeol.com/search/article-detail?id=725034
In this work, we formally prove that, under certain conditions, if a neural network is invariant to a finite group then its weights recover the Fourier transform on that group. This provides a mathematical explanation for the emergence of Fourier fea
Externí odkaz:
http://arxiv.org/abs/2312.08550
Autor:
Frizzell, Lawrence E.
Publikováno v:
The Sixteenth Century Journal, 2015 Apr 01. 46(1), 171-172.
Externí odkaz:
http://www.jstor.org/stable/43920310
Autor:
Mads Paludan Goddiksen, Aurélien Allard, Anna Catharina Vieira Armond, Christine Clavien, Hillar Loor, Céline Schöpfer, Orsolya Varga, Mikkel Willum Johansen
Publikováno v:
International Journal for Educational Integrity, Vol 20, Iss 1, Pp 1-22 (2024)
Abstract In this paper, we introduce Integrity Games ( https://integgame.eu/ ) – a freely available, gamified online teaching tool on academic integrity. In addition, we present results from a randomized controlled experiment measuring the learning
Externí odkaz:
https://doaj.org/article/e23e1e5e5af0408dac051d9c6da297b1
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Autor:
Kooistra, Milton
Publikováno v:
Renaissance Quarterly, 2004 Oct 01. 57(3), 1053-1055.
Externí odkaz:
https://www.jstor.org/stable/4143619
Publikováno v:
The Eleventh International Conference on Learning Representations (2023)
We present a neural network architecture, Bispectral Neural Networks (BNNs) for learning representations that are invariant to the actions of compact commutative groups on the space over which a signal is defined. The model incorporates the ansatz of
Externí odkaz:
http://arxiv.org/abs/2209.03416
Autor:
Hillar Klandorf, Vincent Dartigue
Publikováno v:
Frontiers in Physiology, Vol 15 (2024)
The selection for rapid growth in chickens has rendered meat-type (broiler) chickens susceptible to develop metabolic syndrome and thus inflammation. The sphingolipid ceramide has been linked as a marker of oxidative stress in mammals, however, the r
Externí odkaz:
https://doaj.org/article/871537dc2f3047149dcd9dee71e4f74c