Zobrazeno 1 - 10
of 1 934
pro vyhledávání: '"Hill, Thomas"'
For a locally finite, connected graph $\Gamma$, let $\operatorname{Map}(\Gamma)$ denote the group of proper homotopy equivalences of $\Gamma$ up to proper homotopy. Excluding sporadic cases, we show $\operatorname{Aut}(S(M_\Gamma)) \cong \operatornam
Externí odkaz:
http://arxiv.org/abs/2410.06531
Mann-Rafi's work takes a first step toward studying the coarse geometry of the mapping class group of an infinite-type surface. They accomplish this by constructing a coarsely bounded (CB) generating set for the mapping class groups of such surfaces.
Externí odkaz:
http://arxiv.org/abs/2312.02361
Autor:
Hill, Thomas
The work of Mann and Rafi gives a classification surfaces $\Sigma$ when $\textrm{Map}(\Sigma)$ is globally CB, locally CB, and CB generated under the technical assumption of tameness. In this article, we restrict our study to the pure mapping class g
Externí odkaz:
http://arxiv.org/abs/2309.00124
Autor:
Dickmann, Ryan, Domat, George, Hill, Thomas, Kwak, Sanghoon, Ospina, Carlos, Patel, Priyam, Rechkin, Rebecca
Publikováno v:
Math. Res. Lett. 31 (2024), 127-174
In his paper, Thurston shows that a positive real number $h$ is the topological entropy for an ergodic traintrack representative of an outer automorphism of a free group if and only if its expansion constant $\lambda = e^h$ is a weak Perron number. T
Externí odkaz:
http://arxiv.org/abs/2209.15102
Publikováno v:
Lett. Math. Phys. 110 (2020), no. 11, 3081-3104
We construct non-geometric string compactifications by using the F-theory dual of the heterotic string compactified on a two-torus with two Wilson line parameters, together with a close connection between modular forms and the equations for certain K
Externí odkaz:
http://arxiv.org/abs/2205.08100