Zobrazeno 1 - 10
of 28
pro vyhledávání: '"Hill, Cameron Donnay"'
We introduce the notion of positive local combinatorial dividing-lines in model theory. We show these are equivalently characterized by indecomposable algebraically trivial Fraisse classes and by complete prime filter classes. We exhibit the relation
Externí odkaz:
http://arxiv.org/abs/1702.06102
We use the notion of collapse of generalized indiscernible sequences to classify various model theoretic dividing lines. In particular, we use collapse of n-multi-order indiscernibles to characterize op-dimension n; collapse of function-space indisce
Externí odkaz:
http://arxiv.org/abs/1511.07245
In this paper, we build a dimension theory related to Shelah's 2-rank, dp-rank, and o-minimal dimension. We call this dimension op-dimension. We exhibit the notion of the n-multi-order property, generalizing the order property, and use this to create
Externí odkaz:
http://arxiv.org/abs/1307.4113
Autor:
Hill, Cameron Donnay
We demonstrate that for the $k$-variable theory $T$ of a finite structure (satisfying certain amalgamation conditions), if finite models of $T$ can be recovered from diagrams of finite {\em subsets} of model of $T$ in a certain "efficient" way, then
Externí odkaz:
http://arxiv.org/abs/1210.7882
Autor:
Brower, Donald, Hill, Cameron Donnay
We analyze the notion of weak elimination of hyperimaginaries (WEHI) in simple theories. A key observation in the analysis is a characterization of WEHI in terms of forking dependence -- a condition we dub dependence-witnessed-by-imaginaries (DWIP).
Externí odkaz:
http://arxiv.org/abs/1210.7883
Autor:
Hill, Cameron Donnay
We give an almost entirely model-theoretic account of both Ramsey classes of finite structures and of generalized indiscernibles as studied in special cases in (for example) [7], [9]. We understand "theories of indiscernibles" to be special kinds of
Externí odkaz:
http://arxiv.org/abs/1210.7373
In this paper, we study VC-density over indiscernible sequences (denoted VC_ind-density). We answer an open question in [1], showing that VC_ind-density is always integer valued. We also show that VC_ind-density and dp-rank coincide in the natural wa
Externí odkaz:
http://arxiv.org/abs/1108.2554
Autor:
Guingona, Vincent1 vguingona@towson.edu, Hill, Cameron Donnay2
Publikováno v:
Archive for Mathematical Logic. May2019, Vol. 58 Issue 3/4, p289-323. 35p.
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Autor:
Guingona, Vincent1, Hill, Cameron Donnay2
Publikováno v:
Mathematical Logic Quarterly. Feb2014, Vol. 60 Issue 1/2, p59-65. 7p.