Zobrazeno 1 - 10
of 4 423
pro vyhledávání: '"Hilbert manifold"'
Autor:
Hussain, Javed, Ahmed, Saeed
In this paper, we are interested in finding the existence and uniqueness of the local, local maximal, and global solutions of the equation projected on the Hilbert manifold. Furthermore, we will show that for any given initial data in the Hilbert man
Externí odkaz:
http://arxiv.org/abs/2411.03858
This paper aims to investigate the stochastic generalization of the projected deterministic constrained modified Swift-Hohenberg equation. Specifically, we will investigate a nonlinear parabolic equation in which the first-order time derivative (heat
Externí odkaz:
http://arxiv.org/abs/2410.08535
Autor:
Koike, Naoyuki
In this paper, we introduce the notion of a regularizable submanifold in a Riemannian Hilbert manifold. This submanifold is defined as a curvature-invariant submanifold such that its shape operators and its normal Jacobi operators are regularizable,
Externí odkaz:
http://arxiv.org/abs/2311.10074
Autor:
Hussain, Javed
Publikováno v:
Carpathian Journal of Mathematics, 2023 Jan 01. 39(3), 667-682.
Externí odkaz:
https://www.jstor.org/stable/27225896
Autor:
Tumpach, Alice Barbara
Publikováno v:
Proceedings of XXXVI Workshop on Geometric Methods in Physics 2017
For $s >\frac{3}{2}$, the group of Sobolev class s diffeomorphisms of the circle is a smooth manifold modeled on the space of Sobolev class s sections of the tangent bundle of the circle. It is a topological group in the sense that multiplication giv
Externí odkaz:
http://arxiv.org/abs/2303.15165
Autor:
Brzeźniak, Z., Hussain, J.
Publikováno v:
In Nonlinear Analysis May 2024 242
Autor:
Delay, Erwann
We adapt the Bartnik method to provide a Hilbert manifold structure for the space of solutions, without KID's, to the vacuum constraint equations on compact manifold of any dimension $\geq 3$. In the course, we prove that some fibers of the scalar cu
Externí odkaz:
http://arxiv.org/abs/2003.02129
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Autor:
Delay, Erwann, Fougeirol, Jérémie
We provide a Hilbert manifold structure {\`a} la Bartnik for the space of asymptotically hyperbolic initial data for the vacuum constraint equations. The adaptation led us to prove new weighted Poincar{\'e} and Korn type inequalities for AH manifolds
Externí odkaz:
http://arxiv.org/abs/1607.05616
Autor:
Rai, Juhi H., Saraykar, R. V.
In this paper, we prove that the set of solutions of constraint equations for coupled Einstein and scalar fields in classical general relativity possesses Hilbert manifold structure. We follow the work of R. Bartnik [2] and use weighted Sobolev space
Externí odkaz:
http://arxiv.org/abs/1605.08858