Zobrazeno 1 - 10
of 84
pro vyhledávání: '"Hilbert J, Kappen"'
Publikováno v:
Machine Learning: Science and Technology, Vol 5, Iss 2, p 025017 (2024)
The quantum Boltzmann machine (QBM) is a generative machine learning model for both classical data and quantum states. Training the QBM consists of minimizing the relative entropy from the model to the target state. This requires QBM expectation valu
Externí odkaz:
https://doaj.org/article/f902d820eea341faa3c3a248f68c0868
Autor:
Giel H. H. van Bergen, Pascal Duenk, Cornelis A. Albers, Piter Bijma, Mario P. L. Calus, Yvonne C. J. Wientjes, Hilbert J. Kappen
Publikováno v:
Genetics Selection Evolution, Vol 52, Iss 1, Pp 1-14 (2020)
Abstract Background Estimating the genetic component of a complex phenotype is a complicated problem, mainly because there are many allele effects to estimate from a limited number of phenotypes. In spite of this difficulty, linear methods with varia
Externí odkaz:
https://doaj.org/article/f12d867915424289b4109d3bb4a5c067
Autor:
Pablo R. Kappen, Hilbert J. Kappen, Clemens M.F. Dirven, Markus Klimek, Johannes Jeekel, Elrozy R. Andrinopoulou, Robert J. Osse, Arnaud J.P.E. Vincent
Publikováno v:
World Neurosurgery, 172, e212-e219. Elsevier Inc.
World Neurosurgery, 172, pp. E212-E219
World Neurosurgery, 172, E212-E219
World Neurosurgery, 172, pp. E212-E219
World Neurosurgery, 172, E212-E219
Background: The clinical relevance of postoperative delirium (POD) in neurosurgery remains unclear and should be investigated because these patients are vulnerable. Hence, we investigated the impact of POD, by means of incidence and health outcomes,
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::090880061e45c61f7bd90e6c07809167
https://pure.eur.nl/en/publications/6b4aa6e5-952e-4381-8470-9c0238cf0f24
https://pure.eur.nl/en/publications/6b4aa6e5-952e-4381-8470-9c0238cf0f24
Publikováno v:
PLoS Computational Biology, Vol 12, Iss 6, p e1004895 (2016)
Providing the neurobiological basis of information processing in higher animals, spiking neural networks must be able to learn a variety of complicated computations, including the generation of appropriate, possibly delayed reactions to inputs and th
Externí odkaz:
https://doaj.org/article/c2511a461a334bfbb736440b8eb09abc
Autor:
Hilbert J. Kappen
Publikováno v:
Journal of Physics A. Mathematical and Theoretical, 53, 21, pp. 1-25
Journal of Physics A. Mathematical and Theoretical, 53, 1-25
Journal of Physics A. Mathematical and Theoretical, 53, 1-25
In this paper, we address the problem how to represent a classical data distribution in a quantum system. The proposed method is to learn quantum Hamiltonian that is such that its ground state approximates the given classical distribution. We review
Autor:
Hilbert J. Kappen, Elze J. Knol, Werner M. J. van Weerdenburg, Brian Kiraly, Alexander A. Khajetoorians
Publikováno v:
Nature Nanotechnology, 16, 414-420
Nature Nanotechnology
Nature Nanotechnology, 16, pp. 414-420
Nature Nanotechnology
Nature Nanotechnology, 16, pp. 414-420
The quest to implement machine learning algorithms in hardware has focused on combining various materials, each mimicking a computational primitive, to create device functionality. Ultimately, these piecewise approaches limit functionality and effici
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::30b57cbc9576289d0739ef7fda2cb98f
http://hdl.handle.net/2066/237011
http://hdl.handle.net/2066/237011
Autor:
Brian, Kiraly, Elze J, Knol, Werner M J, van Weerdenburg, Hilbert J, Kappen, Alexander A, Khajetoorians
Publikováno v:
Nature nanotechnology. 16(4)
The quest to implement machine learning algorithms in hardware has focused on combining various materials, each mimicking a computational primitive, to create device functionality. Ultimately, these piecewise approaches limit functionality and effici
Publikováno v:
New Journal of Physics, 22, 2, pp. 1-8
New Journal of Physics, 22, 1-8
New Journal of Physics
New Journal of Physics, 22, 1-8
New Journal of Physics
We demonstrate that a two-dimensional finite and periodic array of Ising spins coupled via RKKY-like exchange can exhibit tunable magnetic states ranging across three distinct magnetic regimes: (1) a conventional ferromagnetic regime, (2) a glass-lik
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::df4dd7de51de4e78599db6ed5cb04f41
https://hdl.handle.net/2066/226554
https://hdl.handle.net/2066/226554
Autor:
Pascal Duenk, Cornelis A. Albers, Giel H. H. van Bergen, Yvonne C. J. Wientjes, Piter Bijma, Mario P. L. Calus, Hilbert J. Kappen
Publikováno v:
Genetics, selection, evolution : GSE, 52(1)
Genetics, Selection, Evolution, 52, 1, pp. 1-14
Genetics Selection Evolution
Genetics Selection Evolution, BioMed Central, 2020, 52 (1), pp.26. ⟨10.1186/s12711-020-00544-8⟩
Genetics Selection Evolution, Vol 52, Iss 1, Pp 1-14 (2020)
Genetics, Selection, Evolution : GSE
Genetics, Selection, Evolution, 52, 1-14
Genetics, selection, evolution : GSE 52 (2020) 1
Genetics, Selection, Evolution, 52, 1, pp. 1-14
Genetics Selection Evolution
Genetics Selection Evolution, BioMed Central, 2020, 52 (1), pp.26. ⟨10.1186/s12711-020-00544-8⟩
Genetics Selection Evolution, Vol 52, Iss 1, Pp 1-14 (2020)
Genetics, Selection, Evolution : GSE
Genetics, Selection, Evolution, 52, 1-14
Genetics, selection, evolution : GSE 52 (2020) 1
Background Estimating the genetic component of a complex phenotype is a complicated problem, mainly because there are many allele effects to estimate from a limited number of phenotypes. In spite of this difficulty, linear methods with variable selec
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::d020a5097d30801914a67cc252d96449
https://research.wur.nl/en/publications/bayesian-neural-networks-with-variable-selection-for-prediction-o
https://research.wur.nl/en/publications/bayesian-neural-networks-with-variable-selection-for-prediction-o
Autor:
Satoshi Satoh, Hilbert J. Kappen
Publikováno v:
IEEJ Transactions on Electrical and Electronic Engineering, 15, 8, pp. 1169-1175
IEEJ Transactions on Electrical and Electronic Engineering, 15, 1169-1175
IEEJ Transactions on Electrical and Electronic Engineering, 15, 1169-1175
Contains fulltext : 224947.pdf (Publisher’s version ) (Closed access)
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::d2f26213e033d6b5909b838c4483804d
https://hdl.handle.net/2066/224947
https://hdl.handle.net/2066/224947