Zobrazeno 1 - 10
of 12 927
pro vyhledávání: '"Hilb, A."'
Autor:
Ayers, Jeffrey, Smirnov, Andrey
We obtain explicit formulas for capped descendent vertex functions of $\text{Hilb}^n(\mathbb{C}^2)$ for descendents given by chern classes of tautological bundles. The expression is the result of twisting a well known generating function for normaliz
Externí odkaz:
http://arxiv.org/abs/2406.00498
Autor:
Kivinen, Oscar, Trinh, Minh-Tâm Quang
Let $R$ be the complete local ring of a complex plane curve germ and $S$ its normalization. We propose a "Hilb-vs-Quot" conjecture relating the virtual weight polynomials of the Hilbert schemes of $R$ to those of the Quot schemes that parametrize $R$
Externí odkaz:
http://arxiv.org/abs/2310.19633
We prove the statement in the title for $n\geq 24$.
Comment: 6 pages
Comment: 6 pages
Externí odkaz:
http://arxiv.org/abs/2311.05408
Autor:
Genlik, Deniz, Tseng, Hsian-Hua
We derive a crepant resolution correspondence for some genus zero reduced Gromov-Witten invariants of Hilbert schemes of points on a K3 surface.
Comment: 9 pages
Comment: 9 pages
Externí odkaz:
http://arxiv.org/abs/2304.06536
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Autor:
Wormleighton, Ben
We study wall-crossing phenomena in the McKay correspondence. Craw-Ishii show that every projective crepant resolution of a Gorenstein abelian quotient singularity arises as a moduli space of $\theta$-stable representations of the McKay quiver. The s
Externí odkaz:
http://arxiv.org/abs/2112.00079
Autor:
Smirnov, Andrey
We consider the quantum difference equation of the Hilbert scheme of points in $\mathbb{C}^2$. This equation is the K-theoretic generalization of the quantum differential equation discovered by A. Okounkov and R. Pandharipande. We obtain two explicit
Externí odkaz:
http://arxiv.org/abs/2102.10726
Autor:
Wormleighton, Ben
Publikováno v:
SIGMA 16 (2020), 106, 38 pages
The three-dimensional McKay correspondence seeks to relate the geometry of crepant resolutions of Gorenstein $3$-fold quotient singularities $\mathbb{A}^3/G$ with the representation theory of the group $G$. The first crepant resolution studied in dep
Externí odkaz:
http://arxiv.org/abs/1908.05748
Autor:
Sato, Y.
Let G be a finite subgroup of SL(n,C), then the quotient C^n/G has a Gorenstein canonical singularity. Bridgeland-King-Reid proved that the G-Hilbert scheme Hilb^G(C^3) gives a crepant resolution of the quotient C^3/G for any finite subgroup G of SL(
Externí odkaz:
http://arxiv.org/abs/1905.06244
Autor:
Mânzăţeanu, Adelina
Let $K$ be a global field of positive characteristic. We give an asymptotic formula for the number of $K$-points of bounded height on the Hilbert scheme $\text{Hilb}^2\mathbb{P}^2$ and show that by eliminating an exceptional thin set, the constant in
Externí odkaz:
http://arxiv.org/abs/1905.04772