Zobrazeno 1 - 10
of 21 784
pro vyhledávání: '"High-Throughput phenotyping"'
Autor:
Madurapperumage, Amod1 (AUTHOR), Naser, M. Z.2,3 (AUTHOR), Boatwright, Lucas1,4 (AUTHOR), Bridges, William5 (AUTHOR), Vandemark, George6 (AUTHOR), Thavarajah, Dil1 (AUTHOR) dthavar@clemson.edu
Publikováno v:
Plants, People, Planet. Jan2025, Vol. 7 Issue 1, p49-61. 13p.
Autor:
Hier, Daniel B., Munzir, S. Ilyas, Stahlfeld, Anne, Obafemi-Ajayi, Tayo, Carrithers, Michael D.
High-throughput phenotyping automates the mapping of patient signs to standardized ontology concepts and is essential for precision medicine. This study evaluates the automation of phenotyping of clinical summaries from the Online Mendelian Inheritan
Externí odkaz:
http://arxiv.org/abs/2408.01214
Autor:
Amod Madurapperumage, M. Z. Naser, Lucas Boatwright, William Bridges, George Vandemark, Dil Thavarajah
Publikováno v:
Plants, People, Planet, Vol 7, Iss 1, Pp 49-61 (2025)
Societal Impact Statement Pulse crops, including dry pea, lentil, and chickpea, are rich sources of protein, low digestible carbohydrates, and micronutrients. With the increasing demand for plant‐based protein with gluten‐free and allergen‐free
Externí odkaz:
https://doaj.org/article/7fe2b93faba1476491fe2637340a041b
High-throughput phenotyping, the automated mapping of patient signs and symptoms to standardized ontology concepts, is essential to gaining value from electronic health records (EHR) in the support of precision medicine. Despite technological advance
Externí odkaz:
http://arxiv.org/abs/2406.14757
Autor:
Wang, Zhenyu1,2 (AUTHOR), Hao, Jiongyu1 (AUTHOR), Shi, Xiaofan2 (AUTHOR), Wang, Qiaoqiao2 (AUTHOR), Zhang, Wuping2 (AUTHOR), Li, Fuzhong2 (AUTHOR), Mur, Luis A. J.3 (AUTHOR), Han, Yuanhuai1,4,5 (AUTHOR), Hou, Siyu1,4 (AUTHOR) siyuhou@sxau.edu.cn, Han, Jiwan2 (AUTHOR) hanjiwan@sxau.edu.cn, Sun, Zhaoxia1,4 (AUTHOR) zhaoxiasun@sxau.edu.cn
Publikováno v:
Plant Methods. 11/5/2024, p1-14. 14p.
High-throughput phenotyping refers to the non-destructive and efficient evaluation of plant phenotypes. In recent years, it has been coupled with machine learning in order to improve the process of phenotyping plants by increasing efficiency in handl
Externí odkaz:
http://arxiv.org/abs/2407.06354
Autor:
Alves, Andressa K. S.1 (AUTHOR), Araújo, Maurício S.1,2 (AUTHOR) mauricioaraujj@usp.br, Chaves, Saulo F. S.1 (AUTHOR), Dias, Luiz Antônio S.1 (AUTHOR), Corrêdo, Lucas P.1 (AUTHOR), Pessoa, Gabriel G. F. A.3 (AUTHOR), Bezerra, André R. G.4 (AUTHOR)
Publikováno v:
Scientific Reports. 12/30/2024, Vol. 14 Issue 1, p1-11. 11p.
Autor:
Monnens, Daniel1 (AUTHOR), López, José R.1 (AUTHOR), McCoy, Erik1 (AUTHOR), Tamang, Bishal G.1 (AUTHOR), Lorenz, Aaron J.1 (AUTHOR), Sadok, Walid1 (AUTHOR) msadok@umn.edu
Publikováno v:
Functional Plant Biology. 2024, Vol. 51 Issue 12, p1-11. 11p.
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Deep phenotyping is the detailed description of patient signs and symptoms using concepts from an ontology. The deep phenotyping of the numerous physician notes in electronic health records requires high throughput methods. Over the past thirty years
Externí odkaz:
http://arxiv.org/abs/2403.05920