Zobrazeno 1 - 10
of 48
pro vyhledávání: '"Higaki, Mitsuo"'
This paper is concerned with effective approximations and wall laws of viscous laminar flows in 3D pipes with randomly rough boundaries. The random roughness is characterized by the boundary oscillation scale $\varepsilon \ll 1 $ and a probability sp
Externí odkaz:
http://arxiv.org/abs/2411.11653
Autor:
Higaki, Mitsuo, Sueur, Franck
We investigate Runge-type approximation theorems for solutions to the 3D unsteady Stokes system. More precisely, we establish that on any compact set with connected complement, local smooth solutions to the 3D unsteady Stokes system can be approximat
Externí odkaz:
http://arxiv.org/abs/2408.17228
Autor:
Higaki, Mitsuo
We prove the existence of solutions for the axisymmetric steady Navier-Stokes system around an infinite cylinder under external forces. The solutions are constructed to be decaying at the horizontal infinity, despite an analogue of the Stokes paradox
Externí odkaz:
http://arxiv.org/abs/2404.02854
Autor:
Higaki, Mitsuo, Horiuchi, Ryoma
We consider the 3D steady Navier-Stokes system on the exterior of an infinite cylinder under the action of an external force. We are concerned with the class of solutions in which the velocity field is vertically uniform and at rest at horizontal inf
Externí odkaz:
http://arxiv.org/abs/2310.09752
Autor:
Higaki, Mitsuo
We consider the two-dimensional Navier-Stokes system in a domain exterior to a disk. The system admits a stationary solution with critical decay $O(|x|^{-1})$ written as a linear combination of the pure rotating flow and the flux carrier. We prove it
Externí odkaz:
http://arxiv.org/abs/2302.02309
Autor:
Higaki, Mitsuo
This paper is concerned with the two-dimensional stationary Navier-Stokes system in the domain exterior to the unit disk. The existence of solutions with critical decay $O(|x|^{-1})$ is established around some explicit flows with large flux. The solu
Externí odkaz:
http://arxiv.org/abs/2207.11922
Autor:
Higaki, Mitsuo, Zhuge, Jinping
In this paper, we study the large-scale boundary regularity for the Stokes system in periodically oscillating John domains. Our main contribution is the construction of boundary layer correctors of arbitrary order. This is a significant generalizatio
Externí odkaz:
http://arxiv.org/abs/2203.16752
Publikováno v:
Analysis & PDE 17 (2024) 171-242
In this paper we address the large-scale regularity theory for the stationary Navier-Stokes equations in highly oscillating bumpy John domains. These domains are very rough, possibly with fractals or cusps, at the microscopic scale, but are amenable
Externí odkaz:
http://arxiv.org/abs/2106.09160
Autor:
Higaki, Mitsuo
0048
甲第21444号
理博第4437号
新制||理||1638(附属図書館)
学位規則第4条第1項該当
Doctor of Science
Kyoto University
DFAM
甲第21444号
理博第4437号
新制||理||1638(附属図書館)
学位規則第4条第1項該当
Doctor of Science
Kyoto University
DFAM
Externí odkaz:
http://hdl.handle.net/2433/236605
Autor:
Higaki, Mitsuo
Publikováno v:
In Journal of Functional Analysis 15 February 2024 286(4)