Zobrazeno 1 - 10
of 200
pro vyhledávání: '"Hidetaka Arimura"'
Autor:
Yizhi Tong, Hidetaka Arimura, Tadamasa Yoshitake, Yunhao Cui, Takumi Kodama, Yoshiyuki Shioyama, Ronnie Wirestam, Hidetake Yabuuchi
Publikováno v:
Applied Sciences, Vol 14, Iss 8, p 3275 (2024)
This study aimed to propose an automated prediction approach of the consolidation tumor ratios (CTRs) of part-solid tumors of patients treated with radiotherapy on treatment planning computed tomography images using deep learning segmentation (DLS) m
Externí odkaz:
https://doaj.org/article/d265278a2d874ea590338ed870fb9145
Autor:
Takumi Kodama, Hidetaka Arimura, Yuko Shirakawa, Kenta Ninomiya, Tadamasa Yoshitake, Yoshiyuki Shioyama
Publikováno v:
Thoracic Cancer, Vol 13, Iss 15, Pp 2117-2126 (2022)
Abstract Background This study aimed to explore the predictability of topological signatures linked to the locoregional relapse (LRR) and distant metastasis (DM) on pretreatment planning computed tomography images of stage I non‐small cell lung can
Externí odkaz:
https://doaj.org/article/a5ec14b2de604db991f3a0c9f46b31e7
Autor:
Taka-aki Hirose, Hidetaka Arimura, Kenta Ninomiya, Tadamasa Yoshitake, Jun-ichi Fukunaga, Yoshiyuki Shioyama
Publikováno v:
Scientific Reports, Vol 10, Iss 1, Pp 1-9 (2020)
Abstract This study developed a radiomics-based predictive model for radiation-induced pneumonitis (RP) after lung cancer stereotactic body radiation therapy (SBRT) on pretreatment planning computed tomography (CT) images. For the RP prediction model
Externí odkaz:
https://doaj.org/article/10262c5974b34e7f9de2e7b300b7fc80
Publikováno v:
PLoS ONE, Vol 17, Iss 1 (2022)
Objectives We aimed to explore the synergistic combination of a topologically invariant Betti number (BN)-based signature and a biomarker for the accurate prediction of symptomatic (grade ≥2) radiation-induced pneumonitis (RP+) before stereotactic
Externí odkaz:
https://doaj.org/article/122beb245ecc4f8ea1c1c3857c325903
Publikováno v:
Metabolites, Vol 12, Iss 10, p 972 (2022)
This study hypothesized that persistent homology (PH) features could capture more intrinsic information about the metabolism and morphology of tumors from 18F-fluorodeoxyglucose positron emission tomography (PET)/computed tomography (CT) images of pa
Externí odkaz:
https://doaj.org/article/0c3babe9217240e6be650819649667ea
Publikováno v:
Applied Sciences, Vol 12, Iss 17, p 8615 (2022)
This is the first preliminary study to develop prediction models for aneurysm rupture risk using radiomics analysis based on follow-up magnetic resonance angiography (MRA) images. We selected 103 follow-up images from 18 unruptured aneurysm (UA) case
Externí odkaz:
https://doaj.org/article/979df13c5aad4b28a3cbcce1cd62f47f
Autor:
Kenta Ninomiya, Hidetaka Arimura, Wai Yee Chan, Kentaro Tanaka, Shinichi Mizuno, Nadia Fareeda Muhammad Gowdh, Nur Adura Yaakup, Chong-Kin Liam, Chee-Shee Chai, Kwan Hoong Ng
Publikováno v:
PLoS ONE, Vol 16, Iss 1, p e0244354 (2021)
ObjectivesTo propose a novel robust radiogenomics approach to the identification of epidermal growth factor receptor (EGFR) mutations among patients with non-small cell lung cancer (NSCLC) using Betti numbers (BNs).Materials and methodsContrast enhan
Externí odkaz:
https://doaj.org/article/e8646537654d4d1492744ac71925fc2c
Publikováno v:
Algorithms, Vol 2, Iss 3, Pp 925-952 (2009)
This paper reviews the basics and recent researches of computer-aided diagnosis (CAD) systems for assisting neuroradiologists in detection of brain diseases, e.g., asymptomatic unruptured aneurysms, Alzheimer's disease, vascular dementia, and multipl
Externí odkaz:
https://doaj.org/article/7f014be86fd94873a98c8624f26bf00a
Autor:
Hidemi Kamezawa, Hidetaka Arimura
Publikováno v:
Physical and Engineering Sciences in Medicine. 46:99-107
We investigated an approach for predicting recurrence after radiation therapy using local binary pattern (LBP)-based dosiomics in patients with head and neck squamous cell carcinoma (HNSCC). Recurrence/non-recurrence data were collected from 131 pati
Autor:
Toshitaka Uehara, Sumiko Watanabe, Shota Yamaguchi, Natsuki Eguchi, Norie Sakamoto, Yoshinao Oda, Hidetaka Arimura, Tsunehisa Kaku, Yoshihiro Ohishi, Shinichi Mizuno
Publikováno v:
Cytotechnology. 75:49-62