Zobrazeno 1 - 10
of 227
pro vyhledávání: '"Heuberger, Clemens"'
Publikováno v:
35th International Conference on Probabilistic, Combinatorial and Asymptotic Methods for the Analysis of Algorithms (AofA 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 302, pp. 24:1-24:14
In the asymptotic analysis of regular sequences as defined by Allouche and Shallit, it is usually advisable to study their summatory function because the original sequence has a too fluctuating behaviour. It might be that the process of taking the su
Externí odkaz:
http://arxiv.org/abs/2403.06589
Publikováno v:
Linear Algebra and its Applications, Volume 707, 15 February 2025, Pages 162-186
The sequence $(\operatorname{Ass}(R/I^n))_{n\in\mathbb{N}}$ of associated primes of powers of a monomial ideal $I$ in a polynomial ring $R$ eventually stabilizes by a known result by Markus Brodmann. L\^e Tu\^an Hoa gives an upper bound for the index
Externí odkaz:
http://arxiv.org/abs/2310.13431
Publikováno v:
Combinator. Probab. Comp. 33 (2024) 518-553
The protection number of a vertex $v$ in a tree is the length of the shortest path from $v$ to any leaf contained in the maximal subtree where $v$ is the root. In this paper, we determine the distribution of the maximum protection number of a vertex
Externí odkaz:
http://arxiv.org/abs/2305.09427
Publikováno v:
Electron. J. Combin.30(2023), no.1, Paper No. 1.26, 18 pp
For fixed non-negative integers $k$, $t$, and $n$, with $t < k$, a $k_t$-Dyck path of length $(k+1)n$ is a lattice path that starts at $(0, 0)$, ends at $((k+1)n, 0)$, stays weakly above the line $y = -t$, and consists of steps from the step-set $\{(
Externí odkaz:
http://arxiv.org/abs/2204.14023
Publikováno v:
In Linear Algebra and Its Applications 15 February 2025 707:162-186
Publikováno v:
J. Symbolic Comput. 123 (2024), Paper No. 102295, 9 pp
In this note, we precisely elaborate the connection between recognisable series (in the sense of Berstel and Reutenauer) and $q$-regular sequences (in the sense of Allouche and Shallit) via their linear representations. In particular, we show that th
Externí odkaz:
http://arxiv.org/abs/2201.13446
Publikováno v:
Algorithmica volume 84, pages 2480-2532 (2022)
For an integer $q\ge2$, a $q$-recursive sequence is defined by recurrence relations on subsequences of indices modulo some powers of~$q$. In this article, $q$-recursive sequences are studied and the asymptotic behavior of their summatory functions is
Externí odkaz:
http://arxiv.org/abs/2105.04334
Publikováno v:
Appl. Algebra Engrg. Comm. Comput. (2024) 35:887--903
It is known that the following five counting problems lead to the same integer sequence~$f_t(n)$: the number of nonequivalent compact Huffman codes of length~$n$ over an alphabet of $t$ letters, the number of `nonequivalent' canonical rooted $t$-ary
Externí odkaz:
http://arxiv.org/abs/1901.11343
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Autor:
Heuberger, Clemens, Krenn, Daniel
Publikováno v:
Algorithmica volume 82, pages 429508 (2020)
In this article, $q$-regular sequences in the sense of Allouche and Shallit are analysed asymptotically. It is shown that the summatory function of a regular sequence can asymptotically be decomposed as a finite sum of periodic fluctuations multiplie
Externí odkaz:
http://arxiv.org/abs/1810.13178