Zobrazeno 1 - 10
of 94
pro vyhledávání: '"Hessenberg variety"'
Autor:
Atar, Busra
A Hessenberg variety is a subvariety of the flag variety parametrized by two maps: a Hessenberg function on $[n]$ and a linear map on $\C^n$. We study regular nilpotent Hessenberg varieties in Lie type A by focusing on the Hessenberg function $h=(n-1
Externí odkaz:
http://hdl.handle.net/11375/28478
Publikováno v:
Sbornik: Mathematics. 212:1765-1784
In this paper we study effective actions of the compact torus on smooth compact manifolds of even dimension with isolated fixed points. It is proved that under certain conditions on the weight vectors of the tangent representation, the orbit space of
Autor:
Martha Precup, Caleb Ji
Publikováno v:
Communications in Algebra. 50:1728-1749
We consider Hessenberg varieties in the flag variety of $GL_n(\mathbb{C})$ with the property that the corresponding Hessenberg function defines an ad-nilpotent ideal. Each such Hessenberg variety is contained in a Springer fiber. We extend a theorem
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Publikováno v:
International Mathematics Research Notices. 2021:16671-16692
We study the space $X_h$ of Hermitian matrices having staircase form and the given simple spectrum. There is a natural action of a compact torus on this space. Using generalized Toda flow, we show that $X_h$ is a smooth manifold and its smooth type i
Publikováno v:
Proceedings of the Steklov Institute of Mathematics. 305:318-344
Regular semisimple Hessenberg varieties are subvarieties of the flag variety Flag(ℂn) arising naturally at the intersection of geometry, representation theory, and combinatorics. Recent results of Abe, Horiguchi, Masuda, Murai, and Sato as well as
Publikováno v:
Journal of Combinatorics. 10:27-59
Autor:
Megumi Harada, Martha Precup
Publikováno v:
Algebraic Combinatorics. 2:1059-1108
We define a subclass of Hessenberg varieties called abelian Hessenberg varieties, inspired by the theory of abelian ideals in a Lie algebra developed by Kostant and Peterson. We give an inductive formula for the $S_n$-representation on the cohomology
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Publikováno v:
Mathematische Zeitschrift.
Let $n$ be a positive integer. The main result of this manuscript is a construction of a filtration on the cohomology ring of a regular nilpotent Hessenberg variety in $GL(n,{\mathbb{C}})/B$ such that its associated graded ring has graded pieces (i.e