Zobrazeno 1 - 10
of 667
pro vyhledávání: '"Hessenberg matrix"'
Autor:
Goy Taras, Shattuck Mark
Publikováno v:
Annales Mathematicae Silesianae, Vol 38, Iss 2, Pp 284-313 (2024)
Let un = un(k) denote the generalized Leonardo number defined recursively by un = un−1 + un−2 + k for n ≥ 2, where u0 = u1 = 1. Terms of the sequence un(1) are referred to simply as Leonardo numbers. In this paper, we find expressions for the d
Externí odkaz:
https://doaj.org/article/93404facd08b42ecbc501e7373d5fa85
Autor:
Leerawat Utsanee, Daowsud Katthaleeya
Publikováno v:
Special Matrices, Vol 11, Iss 1, Pp 1-8 (2022)
In this paper, we derive some relationships between the determinants of some special lower Hessenberg matrices whose entries are the terms of certain sequences and the generating functions of these sequences. Moreover, our results are generalizations
Externí odkaz:
https://doaj.org/article/476b5cb289ba476595f5fe22f7271bbd
Autor:
Shakila Basheer, Kamred Udham Singh, Vandana Sharma, Surbhi Bhatia, Nilesh Pande, Ankit Kumar
Publikováno v:
PeerJ Computer Science, Vol 9, p e1323 (2023)
Advancements in digital medical imaging technologies have significantly impacted the healthcare system. It enables the diagnosis of various diseases through the interpretation of medical images. In addition, telemedicine, including teleradiology, has
Externí odkaz:
https://doaj.org/article/d2d06e38ee0848e29699a3e526e9d575
Publikováno v:
Symmetry, Vol 15, Iss 9, p 1686 (2023)
In view of a general formula for higher order derivatives of the ratio of two differentiable functions, the authors establish the first form for the Maclaurin power series expansion of a logarithmic expression in term of determinants of special Hesse
Externí odkaz:
https://doaj.org/article/f2cf0207411a495796fae402f5ae5309
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Publikováno v:
Open Mathematics, Vol 19, Iss 1, Pp 505-514 (2021)
In this paper, we disprove a remaining conjecture about Bohemian matrices, in which the numbers of distinct determinants of a normalized Bohemian upper-Hessenberg matrix were conjectured.
Externí odkaz:
https://doaj.org/article/7618503d50804d45b21c25ada4105938
Autor:
Nagihan Kara, Fatih Yilmaz
Publikováno v:
Mathematics, Vol 11, Iss 6, p 1551 (2023)
We consider the Gaussian Leonardo numbers and investigate some of their amazing characteristic properties, including their generating function, the associated Binet formula and Cassini identity, and their matrix representation. Then, we define the hy
Externí odkaz:
https://doaj.org/article/777eb85999e14062841b88e50375e627
Autor:
T.P. Goy, S.V. Sharyn
Publikováno v:
Karpatsʹkì Matematičnì Publìkacìï, Vol 12, Iss 2, Pp 280-288 (2020)
In this paper, we find new relations involving the Pell-Padovan sequence which arise as determinants of certain families of Toeplitz-Hessenberg matrices. These determinant formulas may be rewritten as identities involving sums of products of Pell-Pad
Externí odkaz:
https://doaj.org/article/25034a899dd648edb92836e7b37a51c5
Autor:
Taras Goy, Mark Shattuck
Publikováno v:
Transactions on Combinatorics, Vol 9, Iss 2, Pp 89-109 (2020)
In this paper, we evaluate determinants of some families of Toeplitz--Hessenberg matrices having tribonacci number entries. These determinant formulas may also be expressed equivalently as identities that involve sums of products of multi
Externí odkaz:
https://doaj.org/article/e0ed76e521eb4a70a893a954e0831e24
Autor:
Adikanda Behera, Prasanta Kumar Ray
Publikováno v:
AIMS Mathematics, Vol 5, Iss 3, Pp 1843-1855 (2020)
The convolved (u, v)-Lucas first kind p-polynomials are defined using the generating function of the (u, v)-Lucas first kind p-polynomials. The determinantal and permanental representations of the convolved (u, v)-Lucas first kind p-polynomials are u
Externí odkaz:
https://doaj.org/article/bd02b4207f9244d299c72ec385fc053d