Zobrazeno 1 - 10
of 84
pro vyhledávání: '"Hesselholt, Lars"'
Autor:
Hesselholt, Lars, Pstragowski, Piotr
Whatever it is that animates anima and breathes life into higher algebra, this something leaves its trace in the structure of a Dirac ring on the homotopy groups of a commutative algebra in spectra. In the prequel to this paper, we developed the comm
Externí odkaz:
http://arxiv.org/abs/2303.13444
Autor:
Hesselholt, Lars
The purpose of this expository paper is to explain how the Fargues-Fontaine curve and its decomposition into a punctured curve and the formal neighborhood of the puncture naturally arise from various forms of topological cyclic homology and maps betw
Externí odkaz:
http://arxiv.org/abs/2208.00168
Autor:
Hesselholt, Lars, Pstragowski, Piotr
The homotopy groups of a commutative algebra in spectra form a commutative algebra in the symmetric monoidal category of graded abelian groups. The grading and the Koszul sign rule are remnants of the structure encoded by anima as opposed to sets. Th
Externí odkaz:
http://arxiv.org/abs/2207.09256
Autor:
Hesselholt, Lars, Nikolaus, Thomas
This survey of topological cyclic homology is a chapter in the Handbook on Homotopy Theory. We give a brief introduction to topological cyclic homology and the cyclotomic trace map following Nikolaus-Scholze, followed by a proof of B\"okstedt periodi
Externí odkaz:
http://arxiv.org/abs/1905.08984
Autor:
Hesselholt, Lars, Nikolaus, Thomas
In this paper, we evaluate the algebraic $K$-groups of a planar cuspidal curve over a perfect $\mathbb{F}_p$-algebra relative to the cusp point. A conditional calculation of these groups was given earlier by Hesselholt, assuming a conjecture on the s
Externí odkaz:
http://arxiv.org/abs/1903.08295
Let $K$ be a complete discrete valuation field with finite residue field of characteristic $p$, and let $D$ be a central division algebra over $K$ of finite index $d$. Thirty years ago, Suslin and Yufryakov showed that for all prime numbers $\ell$ di
Externí odkaz:
http://arxiv.org/abs/1807.00104
Autor:
Hesselholt, Lars
Publikováno v:
An Alpine Bouquet of Algebraic Topology (Saas Almagell, Switzerland, 2016), pp. 157-180, Contemp. Math. 708, Amer. Math. Soc., Providence, RI., 2018
We consider the Tate cohomology of the circle group acting on the topological Hochschild homology of schemes. We show that in the case of a scheme smooth and proper over a finite field, this cohomology theory naturally gives rise to the cohomological
Externí odkaz:
http://arxiv.org/abs/1602.01980
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Autor:
Berrick, A. J., Hesselholt, Lars
Publikováno v:
J. reine angew. Math. 704 (2015), 169-185
We use the methods of topological Hochschild homology to shed new light on the groups satisfying the Bass trace conjecture. We show that the factorization of the Hattori-Stallings rank map through the Bokstedt-Hsiang-Madsen cyclotomic trace map leads
Externí odkaz:
http://arxiv.org/abs/1305.6438
Autor:
Hesselholt, Lars
Publikováno v:
Algebraic Topology: Applications and New Directions (Stanford, CA, July 23-27, 2012), pp. 145-182, Contemp. Math. 620, Amer. Math. Soc., Providence, RI, 2014
Let k be a regular F_p-algebra, let A = k[x,y]/(x^b - y^a) be the coordinate ring of a planar cuspical curve, and let I = (x,y) be the ideal that defines the cusp point. We give a formula for the relative K-groups K_q(A,I) in terms of the groups of d
Externí odkaz:
http://arxiv.org/abs/1303.6060