Zobrazeno 1 - 10
of 18
pro vyhledávání: '"Hesameddin Mohammadi"'
Publikováno v:
IEEE Control Systems Letters. 7:407-412
Publikováno v:
IEEE Transactions on Automatic Control. 67:2435-2450
Model-free reinforcement learning attempts to find an optimal control action for an unknown dynamical system by directly searching over the parameter space of controllers. The convergence behavior and statistical properties of these approaches are of
Autor:
Hesameddin Mohammadi, Rita Mendes Da Silva, Anita Zeidler, Lawrence V. D. Gammond, Florian Gehlhaar, Marcos de Oliveira, Hugo Damasceno, Hellmut Eckert, Randall E. Youngman, Bruce G. Aitken, Henry E. Fischer, Holger Kohlmann, Laurent Cormier, Chris J. Benmore, Philip S. Salmon
Publikováno v:
Repositório Institucional da USP (Biblioteca Digital da Produção Intelectual)
Universidade de São Paulo (USP)
instacron:USP
Universidade de São Paulo (USP)
instacron:USP
Neutron diffraction with magnesium isotope substitution, high energy x-ray diffraction, and 29Si, 27Al, and 25Mg solid-state nuclear magnetic resonance (NMR) spectroscopy were used to measure the structure of glassy diopside (CaMgSi2O6), enstatite (M
Publikováno v:
IEEE Control Systems Letters. 5:989-994
Model-free reinforcement learning techniques directly search over the parameter space of controllers. Although this often amounts to solving a nonconvex optimization problem, for benchmark control problems simple local search methods exhibit competit
Publikováno v:
2022 American Control Conference (ACC).
Autor:
Hesameddin Mohammadi, Pooya Torab Ahmadi, Rouhollah Ahmadi, Hossein Karimian, Mahdi Maleki, Hosein Banna Motejadded Emrooz
Publikováno v:
Solar Energy Materials and Solar Cells. 191:266-274
In this research work, a three dimensionally (3D) interconnected porous polystyrene-carbon nanotubes (PS-CNT) polyHIPE foam was developed as a phase change material (PCM) scaffold for photo-to-thermal energy storage applications. Structural and therm
Publikováno v:
Journal of the American Ceramic Society. 102:3411-3425
Optimization algorithms are increasingly being used in applications with limited time budgets. In many real-time and embedded scenarios, only a few iterations can be performed and traditional convergence metrics cannot be used to evaluate performance
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::cf45f9a56fecb2f58dbded45bd0a35b1
Publikováno v:
Handbook of Reinforcement Learning and Control ISBN: 9783030609894
We review recent results on the convergence and sample complexity of the random search method for the infinite-horizon linear quadratic regulator (LQR) problem with unknown model parameters. This method directly searches over the space of stabilizing
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_________::4209e22a818dcf85dcde85b9d3cee09d
https://doi.org/10.1007/978-3-030-60990-0_6
https://doi.org/10.1007/978-3-030-60990-0_6
Publikováno v:
CDC
Compared to standard descent-based algorithms, accelerated first-order methods for strongly convex smooth optimization problems may exhibit large transient responses. For quadratic problems, this phenomenon arises from the presence of non-normal dyna