Zobrazeno 1 - 10
of 72
pro vyhledávání: '"Herzig, Florian"'
Autor:
Abe, Noriyuki, Herzig, Florian
Publikováno v:
Vietnam J. Math. 52 (2024), no. 2, 451-478
We establish an optimal (topological) irreducibility criterion for $p$-adic Banach principal series of $\mathrm{GL}_{n}(F)$, where $F/\mathbb{Q}_p$ is finite and $n \le 3$. This is new for $n = 3$ as well as for $n = 2$, $F \ne \mathbb{Q}_p$ and esta
Externí odkaz:
http://arxiv.org/abs/2303.13289
Autor:
Abe, Noriyuki, Herzig, Florian
Suppose that $G$ is the group of $F$-points of a connected reductive group over $F$, where $F/\mathbb{Q}_p$ is a finite extension. We study the (topological) irreducibility of principal series of $G$ on $p$-adic Banach spaces. For unitary inducing re
Externí odkaz:
http://arxiv.org/abs/2303.13287
Let $p$ be a prime number, $K$ a finite unramified extension of $\mathbb{Q}_p$ and $\mathbb{F}$ a finite extension of $\mathbb{F}_p$. Using perfectoid spaces we associate to any finite-dimensional continuous representation $\overline{\rho}$ of ${\rm
Externí odkaz:
http://arxiv.org/abs/2211.00438
Let $p$ be a prime number and $K$ a finite extension of $\mathbb{Q}_p$. We state conjectures on the smooth representations of $\mathrm{GL}_n(K)$ that occur in spaces of mod $p$ automorphic forms (for compact unitary groups). In particular, when $K$ i
Externí odkaz:
http://arxiv.org/abs/2102.06188
Publikováno v:
Invent. Math. 234 (2023), no. 1, 1-128
Let $p$ be a prime number, $F$ a totally real number field unramified at places above $p$ and $D$ a quaternion algebra of center $F$ split at places above $p$ and at no more than one infinite place. Let $v$ be a fixed place of $F$ above $p$ and $\ove
Externí odkaz:
http://arxiv.org/abs/2009.03127
Publikováno v:
Forum Math. Sigma 8 (2020), e2, 73 pp
Suppose that $\mathbf{G}$ is a connected reductive group over a finite extension $F/\mathbb{Q}_p$, and that $C$ is a field of characteristic $p$. We prove that the group $\mathbf{G}(F)$ admits an irreducible admissible supercuspidal, or equivalently
Externí odkaz:
http://arxiv.org/abs/1905.00053
Autor:
Breuil, Christophe, Herzig, Florian
Publikováno v:
Int. Math. Res. Not. IMRN 2020, no. 24, 7504-7550
Let $L$ be a finite extension of $\mathbb{Q}_p$ and $n\geq 2$. We associate to a crystabelline $n$-dimensional representation of $\mathrm{Gal}(\overline L/L)$ satisfying mild genericity assumptions a finite length locally $\mathbb{Q}_p$-analytic repr
Externí odkaz:
http://arxiv.org/abs/1806.02695
Publikováno v:
Represent. Theory 26 (2022), 264-324
Let $G$ be any connected reductive $p$-adic group. Let $K\subset G$ be any special parahoric subgroup and $V,V'$ be any two irreducible smooth $\overline {\mathbb F}_p[K]$-modules. The main goal of this article is to compute the image of the Hecke bi
Externí odkaz:
http://arxiv.org/abs/1805.00244
Autor:
Breuil, Christophe1 (AUTHOR), Herzig, Florian2 (AUTHOR) herzig@math.toronto.edu, Hu, Yongquan3,4 (AUTHOR), Morra, Stefano5 (AUTHOR), Schraen, Benjamin1 (AUTHOR)
Publikováno v:
Inventiones Mathematicae. Oct2023, Vol. 234 Issue 1, p1-128. 128p.
This is a list of questions raised by our joint work arXiv:1412.0737 and its sequels.
Comment: We compiled the questions in this note for the workshop Geometric methods in the mod p local Langlands correspondence held in June 2016 at the Centro
Comment: We compiled the questions in this note for the workshop Geometric methods in the mod p local Langlands correspondence held in June 2016 at the Centro
Externí odkaz:
http://arxiv.org/abs/1703.02063