Zobrazeno 1 - 10
of 31
pro vyhledávání: '"Hervé Frezza-Buet"'
Autor:
Hervé Frezza-Buet
Publikováno v:
ESANN 2022-European Symposium on Artificial Neural Networks, Computational Intelligence and Machine Learning
ESANN 2022-European Symposium on Artificial Neural Networks, Computational Intelligence and Machine Learning, Oct 2022, Bruges, Belgium
ESANN 2022-European Symposium on Artificial Neural Networks, Computational Intelligence and Machine Learning, Oct 2022, Bruges, Belgium
International audience; In this paper, an adaptation of the k-means algorithm and related methods to non-Euclidian topology is presented. The paper introduces a rationale for approximating the geodesics of that topology, as well as a learning rule th
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::40ab5d6cec81e5997615c107ec912b98
https://centralesupelec.hal.science/hal-03823878/document
https://centralesupelec.hal.science/hal-03823878/document
Publikováno v:
Communications in Computer and Information Science, Neural Information Processing, ICONIP 2020
Communications in Computer and Information Science, Neural Information Processing, ICONIP 2020, pp.526-534, 2020, ⟨10.1007/978-3-030-63823-8_60⟩
Communications in Computer and Information Science ISBN: 9783030638221
ICONIP (5)
Communications in Computer and Information Science, Neural Information Processing, ICONIP 2020, pp.526-534, 2020, ⟨10.1007/978-3-030-63823-8_60⟩
Communications in Computer and Information Science ISBN: 9783030638221
ICONIP (5)
International audience; This paper introduces CxSOM, a model to build modular architectures based on self-organizing maps (SOM). An original consensus driven approach enables to adress non-hierarchical architectures where SOMs get organized jointly.
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::16d946b7e4e9deafe2818c4b4a04d625
https://hal-centralesupelec.archives-ouvertes.fr/hal-03030518/file/sub_491.pdf
https://hal-centralesupelec.archives-ouvertes.fr/hal-03030518/file/sub_491.pdf
Autor:
Jérémy Fix, Hervé Frezza-Buet
Publikováno v:
Advances in Intelligent Systems and Computing ISBN: 9783030196417
WSOM
Advances in Self-Organizing Maps, Learning Vector Quantization, Clustering and Data Visualization, WSOM 19
Advances in Self-Organizing Maps, Learning Vector Quantization, Clustering and Data Visualization, WSOM 19, 976, pp.3-12, 2020, Advances in Intelligent Systems and Computing, 978-3-030-19641-7. ⟨10.1007/978-3-030-19642-4_1⟩
WSOM
Advances in Self-Organizing Maps, Learning Vector Quantization, Clustering and Data Visualization, WSOM 19
Advances in Self-Organizing Maps, Learning Vector Quantization, Clustering and Data Visualization, WSOM 19, 976, pp.3-12, 2020, Advances in Intelligent Systems and Computing, 978-3-030-19641-7. ⟨10.1007/978-3-030-19642-4_1⟩
International audience; This paper introduces representations and measurements for revealing the inner self-organization that occurs in a 1D recurrent self-organizing map. Experiments show the incredible richness and robustness of an extremely simple
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::4f704923df3023ad4c58fc67d2a89394
https://doi.org/10.1007/978-3-030-19642-4_1
https://doi.org/10.1007/978-3-030-19642-4_1
Autor:
Hervé Frezza-Buet
Publikováno v:
Neural Networks
Neural Networks, Elsevier, 2014, 60, pp.203-221. ⟨10.1016/j.neunet.2014.08.014⟩
Neural Networks, Elsevier, 2014, 60, pp.203-221. ⟨10.1016/j.neunet.2014.08.014⟩
International audience; This paper presents a vector quantization process that can be applied online to a stream of inputs. It enables to set up and maintain a dynamical representation of the current information in the stream as a topology preserving
Autor:
Hervé Frezza-Buet
Publikováno v:
Neurocomputing
Neurocomputing, Elsevier, 2008, 71 (7-9), pp.1191-1202. ⟨10.1016/j.neucom.2007.12.024⟩
Neurocomputing, Elsevier, 2008, 71 (7-9), pp.1191-1202. ⟨10.1016/j.neucom.2007.12.024⟩
International audience; In this paper, an original method extended from growing neural gas (GNG-T) [B. Fritzke, A growing neural gas network learns topologies, in: G. Tesauro, D.S. Touretzky, T.K. Leen (Eds.), Advances in Neural Information Processin
Autor:
Nicolas Fressengeas, Hervé Frezza-Buet
Publikováno v:
Journal of Cellular Automata
Journal of Cellular Automata, Old City Publishing, 2014, 9 (1), pp.1-21
HAL
Journal of Cellular Automata, Old City Publishing, 2014, 9 (1), pp.1-21
HAL
The pre-print archived version is not the one that is published, as the editor does not formally allow it.; International audience; This paper shows how partial differential problems can be solved thanks to cellular computing and an adaptation of the
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::07b809441c2b418824bd742b4be357db
https://hal.archives-ouvertes.fr/hal-00107064v8/file/Escapade.pdf
https://hal.archives-ouvertes.fr/hal-00107064v8/file/Escapade.pdf
Autor:
Bassem Khouzam, Hervé Frezza-Buet
Publikováno v:
Proceedings of Third World Congress on Nature and Biologically Inspired Computing
NaBIC 2011
NaBIC 2011, Oct 2011, Salamanca, Spain. pp.163-168, ⟨10.1109/NaBIC.2011.6089453⟩
NaBIC
NaBIC 2011
NaBIC 2011, Oct 2011, Salamanca, Spain. pp.163-168, ⟨10.1109/NaBIC.2011.6089453⟩
NaBIC
International audience; This paper presents a multi-map recurrent neural architecture, exhibiting self-organization to deal with the partial observations of the phase of some dynamical system. The architecture captures the dynamics of the system by b
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::af6c944f87f8e0c6caf56bdebf8088b8
https://hal-supelec.archives-ouvertes.fr/hal-00652312/file/KhouzamNaBIC11.pdf
https://hal-supelec.archives-ouvertes.fr/hal-00652312/file/KhouzamNaBIC11.pdf
Publikováno v:
ACM-Transactions on Speech and Language Processing
ACM-Transactions on Speech and Language Processing, Association for Computing Machinery, 2011, 7 (3), pp.art. 7 (1-21). ⟨10.1145/1966407.1966412⟩
ACM-Transactions on Speech and Language Processing, Association for Computing Machinery, 2011, 7 (3), pp.art. 7 (1-21). ⟨10.1145/1966407.1966412⟩
Spoken Dialogue Systems (SDS) are systems which have the ability to interact with human beings using natural language as the medium of interaction. A dialogue policy plays a crucial role in determining the functioning of the dialogue management modul
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::63bc046565a3f01bfac050cc0cf0ac19
http://dl.acm.org/citation.cfm?id=1966412
http://dl.acm.org/citation.cfm?id=1966412
Publikováno v:
Proceedings of the IEEE Symposium on Computational Intelligence, Cognitive Algorithms, Mind, and Brain
CCMB 2011
CCMB 2011, Apr 2011, Paris, France. 7 p., ⟨10.1109/CCMB.2011.5952113⟩
CCMB
CCMB 2011
CCMB 2011, Apr 2011, Paris, France. 7 p., ⟨10.1109/CCMB.2011.5952113⟩
CCMB
International audience; Dynamic neural fields have been proposed as a continuous model of a neural tissue. When dynamic neural fields are used in practical applications, the tuning of their parameters is a challenging issue that most of the time reli
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::3c8911014d90ad0d7ced7149eca1c692
https://hal-supelec.archives-ouvertes.fr/hal-00618117/file/CCMB_2011_JFMGOPHFB.pdf
https://hal-supelec.archives-ouvertes.fr/hal-00618117/file/CCMB_2011_JFMGOPHFB.pdf
Publikováno v:
Connection Science
Connection Science, Taylor & Francis, 2011, 23 (1), pp.1-31. ⟨10.1080/09540091.2010.526194⟩
Connection Science, 2011, 23 (1), pp.1-31. ⟨10.1080/09540091.2010.526194⟩
Connection Science, Taylor & Francis, 2011, 23 (1), pp.1-31. ⟨10.1080/09540091.2010.526194⟩
Connection Science, 2011, 23 (1), pp.1-31. ⟨10.1080/09540091.2010.526194⟩
International audience; In this paper, dynamic neural fields are used to develop key features of a cortically-inspired computational module. Under the perspective of designing computational systems that can exhibit the flexibility and genericity of
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::3f730a4d77afac6b3d71f0bab331ba3d
https://hal.inria.fr/inria-00537799/document
https://hal.inria.fr/inria-00537799/document