Zobrazeno 1 - 10
of 120
pro vyhledávání: '"Hervé, Loïc"'
Autor:
Briane, Marc, Hervé, Loïc
In this paper, we study the asymptotic expansion of the flow X(t, x) solution to the nonlinear ODE: X (t, x) = b X(t, x) with X(0, x) = x $\in$ R d , where b is a regular Z dperiodic vector field in R d. More precisely, we provide various conditions
Externí odkaz:
http://arxiv.org/abs/2301.02000
Autor:
Briane, Marc, Hervé, Loïc
This paper deals with the asymptotics of the ODE's flow induced by a regular vector field b on the d-dimensional torus R d /Z d. First, we start by revisiting the Franks-Misiurewicz theorem which claims that the Herman rotation set of any two-dimensi
Externí odkaz:
http://arxiv.org/abs/2111.02090
Autor:
Briane, Marc, Hervé, Loïc
In this paper, we study various aspects of the ODE's flow $X$ solution to the equation $\partial_t X(t,x)=b(X(t,x))$, $X(0,x)=x$ in the $d$-dimensional torus $Y_d$, where $b$ is a regular $\mathbb{Z}^d$-periodic vector field from $\mathbb{R}^d$ in $\
Externí odkaz:
http://arxiv.org/abs/2101.08995
Autor:
Briane, Marc, Hervé, Loïc
This paper deals with the long time asymptotics X(t, x)/t of the flow X solution to the autonomous vector-valued ODE: X (t, x) = b(X(t, x)) for t $\in$ R, with X(0, x) = x a point of the torus Y d := R d /Z d. We assume that the vector field b reads
Externí odkaz:
http://arxiv.org/abs/2009.13121
Autor:
Briane, Marc, Hervé, Loïc
In this paper we study the large time asymptotics of the flow of a dynamical system $X'=b(X)$ posed in the $d$-dimensional torus. Rather than using the classical unique ergodicity condition which is not fulfilled if $b$ vanishes at different points,
Externí odkaz:
http://arxiv.org/abs/1912.09213
Autor:
Hervé, Loic, Ledoux, James
Let $(X_n)_{n \in\mathbb{N}}$ be a $V$-geometrically ergodic Markov chain on a measurable space $\mathbb{X}$ with invariant probability distribution $\pi$. In this paper, we propose a discretization scheme providing a computable sequence $(\widehat\p
Externí odkaz:
http://arxiv.org/abs/1910.03366
We study the exponential growth of bifurcating processes with ancestral dependence. We suppose here that the lifetimes of the cells are dependent random variables, that the numbers of new cells are random and dependent. Lifetimes and new cells's numb
Externí odkaz:
http://arxiv.org/abs/1701.00718
Autor:
Briane, Marc, Hervé, Loïc
Publikováno v:
In Journal of Differential Equations 15 December 2021 304:165-190
Autor:
Hervé, Loïc, Ledoux, James
Publikováno v:
Statistics and Probability Letters, Elsevier, 2016, 117, pp.72-79
Let $\pi$ be a positive continuous target density on $\mathbb{R}$. Let $P$ be the Metropolis-Hastings operator on the Lebesgue space $\mathbb{L}^2(\pi)$ corresponding to a proposal Markov kernel $Q$ on $\mathbb{R}$. When using the quasi-compactness m
Externí odkaz:
http://arxiv.org/abs/1611.07809
Autor:
Hervé, Loïc, Ledoux, James
We analyse the $\ell^2(\pi)$-convergence rate of irreducible and aperiodic Markov chains with $N$-band transition probability matrix $P$ and with invariant distribution $\pi$. This analysis is heavily based on: first the study of the essential spectr
Externí odkaz:
http://arxiv.org/abs/1511.01717