Zobrazeno 1 - 10
of 26
pro vyhledávání: '"Herscovici, Orli"'
In this paper, we show the stability, and characterize the equality cases in the strong B-inequality of Cordero-Erasquin, Fradelizi and Maurey \cite{B-conj}. As an application, we establish uniqueness of Bobkov's maximal Gaussian measure position fro
Externí odkaz:
http://arxiv.org/abs/2305.17794
Autor:
Herscovici, Orli
In this work we define a unified generating functions for 9 different kinds of set partitions including cyclically ordered set partitions. Such generating function depends on 4 parameters. We consider property of this function and provide combinatori
Externí odkaz:
http://arxiv.org/abs/2208.12325
Autor:
Herscovici, Orli, Livshyts, Galyna V.
In this note, we provide an adaptation of the Kohler-Jobin rearrangement technique to the setting of the Gauss space. As a result, we prove the Gaussian analogue of the Kohler-Jobin's resolution of a conjecture of P\'{o}lya-Szeg\"o: when the Gaussian
Externí odkaz:
http://arxiv.org/abs/2201.06191
Autor:
Herscovici, Orli
In this work we propose a combinatorial model that generalizes the standard definition of permutation. Our model generalizes the degenerate Eulerian polynomials and numbers of Carlitz from 1979 and provides missing combinatorial proofs for some relat
Externí odkaz:
http://arxiv.org/abs/2007.13205
Given a graph property $\mathcal{P}$, F. Harary introduced in 1985 $\mathcal{P}$-colorings, graph colorings where each colorclass induces a graph in $\mathcal{P}$. Let $\chi_{\mathcal{P}}(G;k)$ counts the number of $\mathcal{P}$-colorings of $G$ with
Externí odkaz:
http://arxiv.org/abs/2003.06250
Autor:
Herscovici, Orli
A two-parameter deformation of the Touchard polynomials, based on the NEXT $q$-exponential function of Tsallis, defines two statistics on set partitions. The generating function of classical Touchard polynomials is a composition of two exponential fu
Externí odkaz:
http://arxiv.org/abs/1904.07674
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Autor:
Herscovici, Orli
This work presents a new interpolation tool, namely, cubic $q$-spline. Our new analogue generalizes a well known classical cubic spline. This analogue, based on the Jackson $q$-derivative, replaces an interpolating piecewise cubic polynomial function
Externí odkaz:
http://arxiv.org/abs/1811.02336
Autor:
Herscovici, Orli, Mansour, Toufik
We introduce new generalizations of the Bernoulli, Euler, and Genocchi polynomials and numbers based on the Carlitz-Tsallis degenerate exponential function and concepts of the Umbral Calculus associated with it. Also, we present generalizations of so
Externí odkaz:
http://arxiv.org/abs/1811.02342
Autor:
Herscovici, Orli, Mansour, Toufik
In this paper, we develop a new deformation and generalization of the Natural integral transform based on the conformable fractional $q$-derivative. We obtain transformation of some deformed functions and apply the transform for solving linear differ
Externí odkaz:
http://arxiv.org/abs/1811.02238