Zobrazeno 1 - 10
of 239
pro vyhledávání: '"Herron David A."'
Publikováno v:
Analysis and Geometry in Metric Spaces, Vol 8, Iss 1, Pp 36-67 (2020)
We study Hausdorff convergence (and related topics) in the chordalization of a metric space to better understand pointed Gromov-Hausdorff convergence of quasihyperbolic distances (and other conformal distances).
Externí odkaz:
https://doaj.org/article/8c45436c749840579fd813ac743c3182
NeSy4VRD is a multifaceted resource designed to support the development of neurosymbolic AI (NeSy) research. NeSy4VRD re-establishes public access to the images of the VRD dataset and couples them with an extensively revised, quality-improved version
Externí odkaz:
http://arxiv.org/abs/2305.13258
Autor:
Herron, David A., Martin, Gaven J.
We present an analytical proof that certain natural metric planar universal covers are Hadamard metric spaces. In particular if $\rho=\varphi\circ u$ where $u$ is locally Lipschitz and subharmonic in $\Omega$, $\varphi$ is positive and increasing on
Externí odkaz:
http://arxiv.org/abs/2011.14456
Autor:
Herron, David A, Lindquist, Jeff
We examine Euclidean plane domains with their hyperbolic or quasihyperbolic distance. We prove that the associated metric spaces are quasisymmetrically equivalent if and only if they are bi-Lipschitz equivalent. On the other hand, for Gromov hyperbol
Externí odkaz:
http://arxiv.org/abs/2011.11016
Autor:
Herron, David A., Martin, Gaven J.
We present a simple analytical proof that the natural metric universal cover of a quasihyperbolic planar domain is a complete Hadamard metric space.
Externí odkaz:
http://arxiv.org/abs/2007.00782
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Autor:
Herron, David A, Buckley, Stephen M
This is a tale describing the large scale geometry of Euclidean plane domains with their hyperbolic or quasihyperbolic distances. We prove that in any hyperbolic plane domain, hyperbolic and quasihyperbolic quasi-geodesics are the same curves. We als
Externí odkaz:
http://arxiv.org/abs/1704.07193
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
We show that if $A$ is a closed subset of the Heisenberg group whose vertical projections are nowhere dense, then the complement of $A$ is quasiconvex. In particular, closed sets which are null sets for the cc-Hausdorff $3$-measure have quasiconvex c
Externí odkaz:
http://arxiv.org/abs/1609.07749
Autor:
Zhang, Xianying, Thompson, David, Jeong, Hongseok, Toward, Martin, Herron, David, Jones, Chris, Vincent, Nicolas
Publikováno v:
In Journal of Sound and Vibration 3 March 2020 468