Zobrazeno 1 - 10
of 53
pro vyhledávání: '"Hernandez, Jesus Hernandez"'
Autor:
Hernández, Jesús Hernández
This work is the extension of the results by the author in [7] and [6] for low-genus surfaces. Let $S$ be an orientable, connected surface of finite topological type, with genus $g \leq 2$, empty boundary, and complexity at least $2$; as a complement
Externí odkaz:
http://arxiv.org/abs/2307.15161
Autor:
Hernández, Jesús Hernández, Hrušák, Michael, Morales, Israel, Randecker, Anja, Sedano, Manuel, Valdez, Ferrán
We describe the topological behavior of the conjugacy action of the mapping class group of an orientable infinite-type surface $\Sigma$ on itself. Our main results are: (1) All conjugacy classes of $MCG(\Sigma)$ are meager for every $\Sigma$, (2) $MC
Externí odkaz:
http://arxiv.org/abs/2105.11282
In this work we compute the first integral cohomology of the pure mapping class group of a non-orientable surface of infinite topological type and genus at least 3. To this purpose, we also prove several other results already known for orientable sur
Externí odkaz:
http://arxiv.org/abs/2104.02684
Let $S_{g,n}$ be an orientable surface of genus $g$ with $n$ punctures. We identify a finite rigid subgraph $X_{g,n}$ of the pants graph $\mathcal P (S_{g,n})$, that is, a subgraph with the property that any simplicial embedding of $X_{g,n}$ into any
Externí odkaz:
http://arxiv.org/abs/1907.12734
Let $\phi:\mathcal{C}(S)\to\mathcal{C}(S')$ be a simplicial isomorphism between the curve graphs of two infinite-type surfaces. In this paper we show that in this situation $S$ and $S'$ are homeomorphic and $\phi$ is induced by a homeomorphism $h:S\t
Externí odkaz:
http://arxiv.org/abs/1706.03697
We prove that for any infinite-type orientable surface S there exists a collection of essential curves {\Gamma} in S such that any homeomorphism that preserves the isotopy classes of the elements of {\Gamma} is isotopic to the identity. The collectio
Externí odkaz:
http://arxiv.org/abs/1703.00407
Autor:
Hernández, Jesús Hernández
Let $S_{1}$ and $S_{2}$ be connected orientable surfaces of genus $g_{1}, g_{2} \geq 3$, $n_{1},n_{2} \geq 0$ punctures, and empty boundary. Let also $\varphi: \mathcal{HT}(S_{1}) \rightarrow \mathcal{HT}(S_{2})$ be an edge-preserving alternating map
Externí odkaz:
http://arxiv.org/abs/1611.09986
Autor:
Hernández, Jesús Hernández
Suppose $S_{1}$ and $S_{2}$ are orientable surfaces of finite topological type such that $S_{1}$ has genus at least $3$ and the complexity of $S_{1}$ is an upper bound of the complexity of $S_{2}$. Let $\varphi : \mathcal{C}(S_{1}) \rightarrow \mathc
Externí odkaz:
http://arxiv.org/abs/1611.08328
Autor:
Hernández, Jesús Hernández
For an orientable surface $S$ of finite topological type with genus $g \geq 3$, we construct a finite set of curves whose union of iterated rigid expansions is the curve graph of $S$. The set constructed, and the method of rigid expansion, are closel
Externí odkaz:
http://arxiv.org/abs/1611.08010
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.