Zobrazeno 1 - 6
of 6
pro vyhledávání: '"Hernández, María de la Paz Tirado"'
We give sufficent conditions for a derivation of a $k$-algebra $A$ of finite type to be $\infty$-integrable in the sense of Hasse-Schmidt, when $A$ is a complete intersection, or when $A$ is reduced and $k$ is a regular ring. As a consequence, we pro
Externí odkaz:
http://arxiv.org/abs/2409.19093
Publikováno v:
Journal of Algebra 574 (2021) 70-91
We prove that any multi-variate Hasse-Schmidt derivation can be decomposed in terms of substitution maps and uni-variate Hasse-Schmidt derivations. As a consequence we prove that the bracket of two $m$-integrable derivations is also $m$-integrable, f
Externí odkaz:
http://arxiv.org/abs/1912.11635
We study the behavior of modules of $m$-integrable derivations of a commutative finitely generated algebra in the sense of Hasse-Schmidt under base change. We focus on the case of separable ring extensions over a field of positive characteristic and
Externí odkaz:
http://arxiv.org/abs/1905.01704
Let k be a commutative ring of characteristic p > 0. We prove that leaps of chain formed by modules of integrable derivations in the sense of Hasse-Schmidt of a k-algebra only occur at powers of p.
Externí odkaz:
http://arxiv.org/abs/1901.03580
We describe the module of integrable derivations in the sense of Hasse-Schmidt of the quotient of the polinomial ring in two variables over an ideal generated by the equation x^n-y^q.
Externí odkaz:
http://arxiv.org/abs/1807.10502
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.