Zobrazeno 1 - 10
of 27
pro vyhledávání: '"Hernán Javier San Martín"'
Publikováno v:
Studia Logica. 111:431-452
Autor:
Hernán Javier San Martín
Publikováno v:
Studia Logica. 110:1465-1491
Publikováno v:
Soft Computing. 26:3187-3195
Publikováno v:
Fuzzy Sets and Systems. 463:108447
Publikováno v:
Logic Journal of the IGPL. 30:409-421
This paper deals about dualities for bounded prelinear Hilbert algebras. In particular, we give an Esakia-style duality between the algebraic category of bounded prelinear Hilbert algebras and a category of H-spaces whose morphisms are certain contin
Publikováno v:
Fuzzy Sets and Systems. 397:107-122
Fil: Castiglioni, Jose Luis. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Departamento de Matematicas; Argentina. Consejo Nacional de Investigaciones Cientificas y Tecnicas. Centro Cientifico Tecnologico Conicet - La Plata; Argenti
Publikováno v:
CIC Digital (CICBA)
Comisión de Investigaciones Científicas de la Provincia de Buenos Aires
instacron:CICBA
Comisión de Investigaciones Científicas de la Provincia de Buenos Aires
instacron:CICBA
A subresiduated lattice is a pair (A, D), where A is a bounded distributive lattice, D is a bounded sublattice of A and for every $$a,b\in A$$ there is $$c\in D$$ such that for all $$d\in D$$ , $$d\wedge a\le b$$ if and only if $$d\le c$$ . This c is
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::8b6c1e198602d623eea873fd116d6615
https://digital.cic.gba.gob.ar/handle/11746/11376
https://digital.cic.gba.gob.ar/handle/11746/11376
Publikováno v:
Logic Journal of the IGPL. 26:408-428
Motivated by a construction due to R. Cignoli that relates Heyting algebras and centered Nelson algebras, in this paper we prove that there exists an equivalence between the category of semi-Heyting algebras and the category of centered semi- Nelson
Publikováno v:
Studia Logica. 106:675-690
An l-hemi-implicative semilattice is an algebra A=(A,∧,→,1) such that (A,∧,1) is a semilattice with a greatest element 1 and satisfies: (1) for every a,b,c∈A , a≤b→c implies a∧b≤c and (2) a→a=1 . An l-hemi-implicative semilattice is
Publikováno v:
SEDICI (UNLP)
Universidad Nacional de La Plata
instacron:UNLP
Universidad Nacional de La Plata
instacron:UNLP
Inspired by an old construction due to J. Kalman that relates distributive lattices and centered Kleene algebras, in this paper we study an equivalence for certain categories whose objects are algebras with implication (H, ∧, ∨, →, 0, 1) which