Zobrazeno 1 - 10
of 195
pro vyhledávání: '"Hermitian curve"'
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Autor:
Austin Allen, Keller Blackwell, Olivia Fiol, Rutuja Kshirsagar, Bethany Matsick, Gretchen L. Matthews, Zoe Nelson
Publikováno v:
Mathematics, Vol 9, Iss 1, p 40 (2020)
We define a family of codes called twisted Hermitian codes, which are based on Hermitian codes and inspired by the twisted Reed–Solomon codes described by Beelen, Puchinger, and Nielsen. We demonstrate that these new codes can have high-dimensional
Externí odkaz:
https://doaj.org/article/9d6724a4e8b14b22896d3c0a2197490b
Publikováno v:
IEEE Transactions on Information Theory. 66:3547-3554
Hermitian functional and differential codes are AG-codes defined on a Hermitian curve. To ensure good performance, the divisors defining such AG-codes have to be carefully chosen, exploiting the rich combinatorial and algebraic properties of the Herm
Autor:
Zoe Nelson, Rutuja Kshirsagar, Austin Allen, Bethany Matsick, Gretchen L. Matthews, Olivia Fiol, Keller Blackwell
Publikováno v:
Mathematics, Vol 9, Iss 40, p 40 (2021)
Mathematics
Volume 9
Issue 1
Mathematics
Volume 9
Issue 1
We define a family of codes called twisted Hermitian codes, which are based on Hermitian codes and inspired by the twisted Reed&ndash
Solomon codes described by Beelen, Puchinger, and Nielsen. We demonstrate that these new codes can have high-di
Solomon codes described by Beelen, Puchinger, and Nielsen. We demonstrate that these new codes can have high-di
Publikováno v:
Giulietti, M, Kawakita, M, Lia, S & Montanucci, M 2021, ' An F p 2-maximal Wiman sextic and its automorphisms ', Advances in Geometry, vol. 21, no. 4, pp. 451-461 . https://doi.org/10.1515/advgeom-2020-0012
In 1895 Wiman introduced the Riemann surface 𝒲 of genus 6 over the complex field ℂ defined by the equationX6+Y6+ℨ6+(X2+Y2+ℨ2)(X4+Y4+ℨ4)−12X2Y2ℨ2= 0, and showed that its full automorphism group is isomorphic to the symmetric groupS5. We
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::87e6bee9330fe2c8343452182590e72d
https://orbit.dtu.dk/en/publications/24f11d58-2e3d-40ba-b24a-0282c98e29fb
https://orbit.dtu.dk/en/publications/24f11d58-2e3d-40ba-b24a-0282c98e29fb
Publikováno v:
Bartoli, D, Montanucci, M & Torres, F 2021, ' F p2-maximal curves with many automorphisms are Galois-covered by the Hermitian curve ', Advances in Geometry, vol. 21, no. 3, pp. 325-336 . https://doi.org/10.1515/advgeom-2021-0013
Let 𝔽 be the finite field of orderq2. It is sometimes attributed to Serre that any curve 𝔽-covered by the Hermitian curveHq+1:yq+1=xq+x${{\mathcal{H}}_{q+1}}:{{y}^{q+1}}={{x }^{q}}+x$is also 𝔽-maximal. For prime numbersqwe show that every
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::f528a4c8acdb7a6d8710faf8cf676747
https://orbit.dtu.dk/en/publications/6248107c-63dd-4f87-ab10-2dfc0d2b879c
https://orbit.dtu.dk/en/publications/6248107c-63dd-4f87-ab10-2dfc0d2b879c
Publikováno v:
Biblioteca Digital de Teses e Dissertações da Universidade Estadual de Campinas (UNICAMP)
Universidade Estadual de Campinas (UNICAMP)
instacron:UNICAMP
Universidade Estadual de Campinas (UNICAMP)
instacron:UNICAMP
Orientadores: Fernando Eduardo Torres Orihuela, Ercílio Carvalho da Silva Tese (doutorado) - Universidade Estadual de Campinas, Instituto de Matemática Estatística e Computação Científica Resumo: Apresentamos algumas aplicações, especialmente
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::dcf8fe915b02000d7e2de2e2ca63e642
https://doi.org/10.47749/t/unicamp.2014.935649
https://doi.org/10.47749/t/unicamp.2014.935649
Autor:
Giovanni Zini, Maria Montanucci
Publikováno v:
Montanucci, M & Zini, G 2019, ' Quotients of the Hermitian curve from subgroups of PGU(3,q) without fixed points or triangles ', Journal of Algebraic Combinatorics . https://doi.org/10.1007/s10801-019-00905-7
In this paper, we deal with the problem of classifying the genera of quotient curves $${\mathcal {H}}_q/G$$ , where $${\mathcal {H}}_q$$ is the $${\mathbb {F}}_{q^2}$$ -maximal Hermitian curve and G is an automorphism group of $${\mathcal {H}}_q$$ .