Zobrazeno 1 - 10
of 537
pro vyhledávání: '"Hermite-Hadamard inequalities"'
Publikováno v:
AIMS Mathematics, Vol 9, Iss 10, Pp 29018-29030 (2024)
In this paper, we are concerned with the study of the existence and uniqueness of fixed points for the class of functions $ f: C\to C $ satisfying the inequality$ \ell\left(\alpha f(t)+(1-\alpha)f(s)\right)\leq \sigma \ell(\alpha t+(1-\alpha)s) $for
Externí odkaz:
https://doaj.org/article/998b7ed24f8d4ab2830cbe3b2794ec25
Publikováno v:
Surveys in Mathematics and its Applications, Vol 18 (2023), Pp 223-257 (2023)
A review on Hermite-Hadamard type inequalities connected with a different classes of convexities and fractional differential operators is presented. In the various classes of convexities it includes, classical convex functions, quasi-convex functions
Externí odkaz:
https://doaj.org/article/f8fbaefb57884d5484ac23305dba08f3
Publikováno v:
Fractal and Fractional, Vol 8, Iss 9, p 541 (2024)
In this article, we develop multiplicative fractional versions of Simpson’s and Newton’s formula-type inequalities for differentiable generalized convex functions with the help of established identities. The main motivation for using generalized
Externí odkaz:
https://doaj.org/article/b07bd6b736884681b514394df80c85d0
Publikováno v:
International Journal of Computational Intelligence Systems, Vol 16, Iss 1, Pp 1-9 (2023)
Abstract We present a comprehensive study on Hermite–Hadamard-type inequalities for interval-valued functions that are $$\hbar$$ ħ -preinvex, using the Riemann–Liouville fractional integral. Our research extends and generalizes some existing res
Externí odkaz:
https://doaj.org/article/c372d872762742fbb40dc10cf7a21ef1
Publikováno v:
Sahand Communications in Mathematical Analysis, Vol 20, Iss 2, Pp 85-107 (2023)
We first construct new Hermite-Hadamard type inequalities which include generalized fractional integrals for convex functions by using an operator which generates some significant fractional integrals such as Riemann-Liouville fractional and the Hada
Externí odkaz:
https://doaj.org/article/2f228c455d044fd999326316212d803f
Publikováno v:
Journal of Inequalities and Applications, Vol 2023, Iss 1, Pp 1-19 (2023)
Abstract Integral inequalities with generalized convexity play an important role in both applied and theoretical mathematics. The theory of integral inequalities is currently one of the most rapidly developing areas of mathematics due to its wide ran
Externí odkaz:
https://doaj.org/article/3a6cca4e6c6a4fe38714ca1c8f4c2a83
Publikováno v:
AIMS Mathematics, Vol 8, Iss 1, Pp 1620-1635 (2023)
In this work, Hölder-Isçan inequality is used for the class of n-times differentiable (s,m)-convex functions. The outcomes are new Hermite-Hadamard type inequalities and modified integrals are estimated by better bounds. Special cases are deduced a
Externí odkaz:
https://doaj.org/article/a7be138326f347499b687871423d06db
Autor:
M. Omaba
Publikováno v:
Karpatsʹkì Matematičnì Publìkacìï, Vol 14, Iss 2, Pp 475-484 (2022)
A new generalization of the Katugampola generalized fractional integrals in terms of the Mittag-Leffler functions is proposed. Consequently, new generalizations of the Hermite-Hadamard inequalities by this newly proposed fractional integral operator,
Externí odkaz:
https://doaj.org/article/036813822fa845a2b52c4d08ff8fad23
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Publikováno v:
Journal of Inequalities and Applications, Vol 2022, Iss 1, Pp 1-12 (2022)
Abstract This paper is devoted to proving some new fractional inequalities via recent generalized fractional operators. These inequalities are in the Hermite–Hadamard and Minkowski settings. Many previously documented inequalities may clearly be de
Externí odkaz:
https://doaj.org/article/f500d23a833c4eea8566da0b6dc25830