Zobrazeno 1 - 10
of 74
pro vyhledávání: '"Hermann Sohr"'
Publikováno v:
Recent Advances in Partial Differential Equations and Applications. :163-177
Necessary and sufficient conditions for the existence of Helmholtz decompositions in general domains
Publikováno v:
ANNALI DELL'UNIVERSITA' DI FERRARA. 60:245-262
Consider a general domain \(\varOmega \subseteq {\mathbb {R}}^n, n\ge 2\), and let \(1 0\). This estimate was introduced by Simader and Sohr (Mathematical Problems Relating to the Navier–Stokes Equations. Series on Advances in Mathematics for Appli
Publikováno v:
Journal of Mathematical Fluid Mechanics. 14:529-540
Consider a smooth bounded domain \({\Omega \subseteq {\mathbb{R}}^3}\) , a time interval [0, T), 0 < T ≤ ∞, and a weak solution u of the Navier–Stokes system. Our aim is to develop several new sufficient conditions on u yielding uniqueness and/
Publikováno v:
Rendiconti del Seminario Matematico della Università di Padova. 125:51-70
Consider a smooth bounded domain Ω ⊆ R with boundary ∂Ω, a time interval [0, T ), 0 < T ≤ ∞, and the Navier-Stokes system in [0, T )×Ω, with initial value u0 ∈ Lσ(Ω) and external force f = divF , F ∈ L(0, T ;L(Ω)). Our aim is to ex
Autor:
Reinhard Farwig, Hermann Sohr
Publikováno v:
Nonlinear Analysis: Theory, Methods & Applications. 73:1459-1465
There are only very few results on the existence of unique local in time strong solutions of the Navier–Stokes equations for completely general domains Ω ⊆ R 3 , although domains with edges and corners, bounded or unbounded, are very important i
Publikováno v:
Funkcialaj Ekvacioj. 53:231-247
Consider the Navier-Stokes equations in a smooth bounded domain Ω ⊂ R3 and a time interval [0, T), 0 < T ≤ ∞. It is well-known that there exists at least one global weak solution u with vanishing boundary values u|∂Ω = 0 for any given initi
Publikováno v:
ANNALI DELL'UNIVERSITA' DI FERRARA. 55:89-110
Consider a smooth bounded domain $${\varOmega\subseteq{\mathbb R}^3}$$ , and the Navier–Stokes system in $${[0,\infty)\times\varOmega}$$ with initial value $${u_0\in L^2_\sigma(\varOmega)}$$ and external force f = div F, $${F\,{\in} \,L^2(0,\infty;
Autor:
Hermann Sohr, Reinhard Farwig
Publikováno v:
Mathematische Annalen. 345:631-642
Consider the instationary Navier–Stokes system in a smooth bounded domain $${\Omega\subset \mathbb {R}^3}$$ with vanishing force and initial value $${u_0\in L^2_\sigma(\Omega)}$$ . Since the work of Kiselev and Ladyzhenskaya (Am. Math. Soc. Transl.
Autor:
Hermann Sohr, Reinhard Farwig
Publikováno v:
Czechoslovak Mathematical Journal. 59:61-79
For a bounded domain Ω ⊂ ℝn, n ⩾ 3, we use the notion of very weak solutions to obtain a new and large uniqueness class for solutions of the inhomogeneous Navier-Stokes system − Δu + u · ∇u + ∇p = f, div u = k, u|aΩ = g with u ∈ Lq,