Zobrazeno 1 - 10
of 21
pro vyhledávání: '"Herivelto Borges"'
Publikováno v:
Finite Fields and Their Applications. 90:102229
Autor:
Herivelto Borges, Lucas Reis
Publikováno v:
Proceedings of the American Mathematical Society. 149:3639-3649
For any prime number p p , and integer k ⩾ 1 k\geqslant 1 , let F p k \mathbb {F}_{p^k} be the finite field of p k p^k elements. A famous problem in the theory of polynomials over finite fields is the characterization of all nonconstant polynomials
Autor:
Mariana Coutinho, Herivelto Borges
Publikováno v:
Repositório Institucional da USP (Biblioteca Digital da Produção Intelectual)
Universidade de São Paulo (USP)
instacron:USP
Universidade de São Paulo (USP)
instacron:USP
For p p an odd prime number, q 0 = p t q_{0}=p^{t} , and q = p 2 t − 1 q=p^{2t-1} , let X G S \mathcal {X}_{\mathcal {G}_{\mathcal {S}}} be the nonsingular model of Y q − Y = X q 0 ( X q − X ) . \begin{equation*} Y^{q}-Y=X^{q_{0}}(X^{q}-X). \en
Autor:
Herivelto Borges, Satoru Fukasawa
Publikováno v:
Repositório Institucional da USP (Biblioteca Digital da Produção Intelectual)
Universidade de São Paulo (USP)
instacron:USP
Universidade de São Paulo (USP)
instacron:USP
The full automorphism group of a certain elementary abelian $p$-cover of the Hermitian curve in characteristic $p>0$ is determined. It is remarkable that the order of Sylow $p$-groups of the automorphism group is close to Nakajima's bound in terms of
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::9c5f172e0d80671f2866da910240aa62
Autor:
Herivelto Borges, Satoru Fukasawa
Publikováno v:
Repositório Institucional da USP (Biblioteca Digital da Produção Intelectual)
Universidade de São Paulo (USP)
instacron:USP
Universidade de São Paulo (USP)
instacron:USP
We determine the distribution of Galois points for plane curves over a finite field of $q$ elements, which are Frobenius nonclassical for different powers of $q$. This family is an important class of plane curves with many remarkable properties. It c
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::30d180b35a0356aea809577d0715df0d
Publikováno v:
Repositório Institucional da USP (Biblioteca Digital da Produção Intelectual)
Universidade de São Paulo (USP)
instacron:USP
Universidade de São Paulo (USP)
instacron:USP
In connection with Galois Theory and Algebraic Curves, this paper investigates rational functions $h(x) = f(x)/g(x) \in \mathbb{F}_q(x)$ for which the value set $V_h = {\{h(α) | α \in \mathbb{F}_q \cup\{\infty\}}\}$ is relatively small. In particul
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::1d903de889fa3176a9bc284a8d9bbac8
Autor:
Herivelto Borges, Ricardo Conceição
Publikováno v:
Repositório Institucional da USP (Biblioteca Digital da Produção Intelectual)
Universidade de São Paulo (USP)
instacron:USP
Universidade de São Paulo (USP)
instacron:USP
Motivated by the study of minimal value set polynomials, we construct F q -Frobenius nonclassical curves with a large number of F q -rational points. For some of these curves, we determine the Weierstrass semigroup at the unique point at infinity. In
On some generalized Fermat curves and chords of an affinely regular polygon inscribed in a hyperbola
Autor:
Herivelto Borges, Mariana Coutinho
Publikováno v:
Repositório Institucional da USP (Biblioteca Digital da Produção Intelectual)
Universidade de São Paulo (USP)
instacron:USP
Universidade de São Paulo (USP)
instacron:USP
Let G be the projective plane curve defined over F q given by a X n Y n − X n Z n − Y n Z n + b Z 2 n = 0 , where a b ∉ { 0 , 1 } , and for each s ∈ { 2 , … , n − 1 } , let D s P 1 , P 2 be the base-point-free linear series cut out on G b
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::5fe5d8d60b2f564f724d1c846c94359c
Autor:
Masaaki Homma, Herivelto Borges
Publikováno v:
Repositório Institucional da USP (Biblioteca Digital da Produção Intelectual)
Universidade de São Paulo (USP)
instacron:USP
Universidade de São Paulo (USP)
instacron:USP
In 1990, Hefez and Voloch proved that the number of \(\mathbb {F}_q\)-rational points on a nonsingular plane q-Frobenius nonclassical curve of degree d is \(N=d(q-d+2)\). We address these curves in the singular setting. In particular, we prove that \
Autor:
Herivelto Borges
Publikováno v:
Repositório Institucional da USP (Biblioteca Digital da Produção Intelectual)
Universidade de São Paulo (USP)
instacron:USP
Universidade de São Paulo (USP)
instacron:USP
We establish a relation between minimal value set polynomials defined over F q and certain q -Frobenius nonclassical curves. The connection leads to a characterization of the curves of type g ( y ) = f ( x ) , whose irreducible components are q -Frob