Zobrazeno 1 - 10
of 69
pro vyhledávání: '"Herda Maxime"'
We present a finite volume scheme for modeling the diffusion of charged particles, specifically ions, in constrained geometries using a degenerate Poisson-Nernst-Planck system with size exclusion yielding cross-diffusion. Our method utilizes a two-po
Externí odkaz:
http://arxiv.org/abs/2411.11583
An instationary drift-diffusion system for the electron, hole, and oxygen vacancy densities, coupled to the Poisson equation for the electric potential, is analyzed in a bounded domain with mixed Dirichlet-Neumann boundary conditions. The electron an
Externí odkaz:
http://arxiv.org/abs/2409.01196
Autor:
Gervais, Pierre, Herda, Maxime
We study the well-posedness, steady states and long time behavior of solutions to Vlasov-Fokker-Planck equation with external confinement potential and nonlinear self-consistent interactions. Our analysis introduces newly characterized conditions on
Externí odkaz:
http://arxiv.org/abs/2408.16468
Autor:
Badsi Mehdi, Herda Maxime
Publikováno v:
ESAIM: Proceedings and Surveys, Vol 53, Pp 22-37 (2016)
This paper is devoted to the modelling and numerical simulations of collisionless multispecies plasmas. In the framework of tokamak applications, we detail the dimensional analysis of the coupled kinetic system in order to extract the important par
Externí odkaz:
https://doaj.org/article/6195d324c8994630b32c6e07eabc34ab
Autor:
Cesbron, Ludovic, Herda, Maxime
In this paper we study a self-consistent Vlasov-Fokker-Planck equations which describes the longitudinal dynamics of an electron bunch in the storage ring of a synchrotron particle accelerator. We show existence and uniqueness of global classical sol
Externí odkaz:
http://arxiv.org/abs/2307.15964
Neuron models have attracted a lot of attention recently, both in mathematics and neuroscience. We are interested in studying long-time and large-population emerging properties in a simplified toy model. From a mathematical perspective, this amounts
Externí odkaz:
http://arxiv.org/abs/2307.13362
In this paper, we consider a drift-diffusion charge transport model for perovskite solar cells, where electrons and holes may diffuse linearly (Boltzmann approximation) or nonlinearly (e.g. due to Fermi-Dirac statistics). To incorporate volume exclus
Externí odkaz:
http://arxiv.org/abs/2209.07934
Autor:
Herda, Maxime, Zurek, Antoine
Publikováno v:
ESAIM: M2AN, volume 57, 2023, 1589 - 1617
In this paper we analyse a finite volume scheme for a nonlocal version of the Shigesada-Kawazaki-Teramoto (SKT) cross-diffusion system. We prove the existence of solutions to the scheme, derive qualitative properties of the solutions and prove its co
Externí odkaz:
http://arxiv.org/abs/2207.01928
Autor:
Cesbron, Ludovic, Herda, Maxime
Publikováno v:
In Journal of Differential Equations 25 September 2024 404:316-353
In this paper, we introduce and analyse numerical schemes for the homogeneous and the kinetic L\'evy-Fokker-Planck equation. The discretizations are designed to preserve the main features of the continuous model such as conservation of mass, heavy-ta
Externí odkaz:
http://arxiv.org/abs/2107.13416