Zobrazeno 1 - 6
of 6
pro vyhledávání: '"Heraldo Borges"'
Autor:
Ricardo Buçard de Castro, Vinicius Correia Monteiro, Rafaelli Coutinho, Heraldo Borges, Eduardo Ogasawara
Publikováno v:
Anais do XVI Brazilian e-Science Workshop (BRESCI 2022).
As análises de motifs espaço-temporais podem fornecer intuições sobre os dados. Também pode ser particularmente interessante analisar os padrões espaciais fixando-se uma fatia temporal. Uma variável na qual a relação espaço e tempo é prese
Autor:
Antonio Castro, Heraldo Borges, Ricardo Campisano, Esther Pacitti, Fabio Porto, Rafaelli Coutinho, Eduardo Ogasawara
Publikováno v:
SBBD 2021-Simpósio Brasileiro de Banco de Dados
SBBD 2021-Simpósio Brasileiro de Banco de Dados, SBC, Oct 2021, Online, Brazil. pp.313-318, ⟨10.5753/sbbd.2021.17891⟩
SBBD: Simpósio Brasileiro de Banco de Dados
SBBD: Simpósio Brasileiro de Banco de Dados, SBC, Oct 2021, Online, Brazil. pp.313-318
SBBD 2021-Simpósio Brasileiro de Banco de Dados, SBC, Oct 2021, Online, Brazil. pp.313-318, ⟨10.5753/sbbd.2021.17891⟩
SBBD: Simpósio Brasileiro de Banco de Dados
SBBD: Simpósio Brasileiro de Banco de Dados, SBC, Oct 2021, Online, Brazil. pp.313-318
International audience; Spatiotemporal patterns bring knowledge of sequences of events, place and time when they occur. Finding such patterns is a complex task and one of great value for different domains. However, not all patterns are frequent acros
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::9848e46b2396a0232384b39bce99d687
https://hal-lirmm.ccsd.cnrs.fr/lirmm-03452154/document
https://hal-lirmm.ccsd.cnrs.fr/lirmm-03452154/document
Autor:
Fabio Porto, Amin Bazaz, Murillo Dutra, Fábio André Perosi, Heraldo Borges, Eduardo Ogasawara, Florent Masseglia, Rafaelli Coutinho, Esther Pacitti
Publikováno v:
Intelligent Data Analysis
Intelligent Data Analysis, 2020, 24 (5), pp.1121-1140. ⟨10.3233/IDA-194759⟩
Intelligent Data Analysis, IOS Press, 2020
Intelligent Data Analysis, 2020, 24 (5), pp.1121-1140. ⟨10.3233/IDA-194759⟩
Intelligent Data Analysis, IOS Press, 2020
International audience; Discovering motifs in time series data has been widely explored. Various techniques have been developed to tackle this problem. However, when it comes to spatial-time series, a clear gap can be observed according to the litera
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::9fec75e810a0432fab53472b50064772
https://hal-lirmm.ccsd.cnrs.fr/lirmm-02984969
https://hal-lirmm.ccsd.cnrs.fr/lirmm-02984969
Autor:
Leonardo Ferreira dos Santos, Eduardo Ogasawara, Flavio Carvalho, Heraldo Borges, Gustavo Paiva Guedes
Publikováno v:
WebMedia
Users are continually using text-based social networks and messaging applications to express their sentiments throughout the day. Each post can be interpreted as an event with a message and a time-stamp associated with it. With these considerations,
Autor:
Fabio Porto, Fábio André Perosi, Florent Masseglia, Eduardo Ogasawara, Esther Pacitti, Heraldo Borges, Riccardo Campisano
Publikováno v:
20th International Conference on Big Data Analytics and Knowledge Discovery
DaWaK: Data Warehousing and Knowledge Discovery
DaWaK: Data Warehousing and Knowledge Discovery, Sep 2018, Regensburg, Germany. pp.247-257, ⟨10.1007/978-3-319-98539-8_19⟩
Big Data Analytics and Knowledge Discovery ISBN: 9783319985381
DaWaK
Big Data Analytics and Knowledge Discovery-20th International Conference, DaWaK 2018, Regensburg, Germany, September 3–6, 2018, Proceedings
Lecture Notes in Computer Science
Lecture Notes in Computer Science-Big Data Analytics and Knowledge Discovery
DaWaK: Data Warehousing and Knowledge Discovery
DaWaK: Data Warehousing and Knowledge Discovery, Sep 2018, Regensburg, Germany. pp.247-257, ⟨10.1007/978-3-319-98539-8_19⟩
Big Data Analytics and Knowledge Discovery ISBN: 9783319985381
DaWaK
Big Data Analytics and Knowledge Discovery-20th International Conference, DaWaK 2018, Regensburg, Germany, September 3–6, 2018, Proceedings
Lecture Notes in Computer Science
Lecture Notes in Computer Science-Big Data Analytics and Knowledge Discovery
International audience; The problem of discovering spatiotemporal sequential patterns affects a broad range of applications. Many initiatives find sequences constrained by space and time. This paper addresses an appealing new challenge for this domai
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::e7cddee949f127464ef60bc4d2695e93
https://hal.science/hal-01925965
https://hal.science/hal-01925965
Publikováno v:
RiuNet. Repositorio Institucional de la Universitat Politécnica de Valéncia
instname
instname
This article is the result of a partnership between the research group Urban Issues: Design, Architecture, Planning and Landscape - Q.URB, and the Group of Studies of the Urban Form in Brazil - FU.bá, both of the Faculty of Architecture and Urbanism
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::33d37f07982bafa04d33c5ea554265de
https://doi.org/10.4995/isuf2017.2017.6286
https://doi.org/10.4995/isuf2017.2017.6286