Zobrazeno 1 - 10
of 435
pro vyhledávání: '"Hensley, Doug"'
A classical result of Khinchin says that for almost all real numbers $\alpha$, the geometric mean of the first $n$ digits $a_i(\alpha)$ in the continued fraction expansion of $\alpha$ converges to a number $K = 2.6854520\ldots$ (Khinchin's constant)
Externí odkaz:
http://arxiv.org/abs/1402.0208
Autor:
Hensley, Doug, Su, Francis Edward
Publikováno v:
DIMACS Ser. Discrete Math. Theoret. Comput. Sci. 64 (2004), 95-101.
Using the discrepancy metric, we analyze the rate of convergence of a random walk on the circle generated by d rotations, and establish sharp rates that show that badly approximable d-tuples in R^d give rise to walks with the fastest convergence. We
Externí odkaz:
http://arxiv.org/abs/math/0102206
Autor:
Friesen, Christian, Hensley, Doug
Publikováno v:
Proceedings of the American Mathematical Society, 1996 Sep 01. 124(9), 2661-2673.
Externí odkaz:
https://www.jstor.org/stable/2161705
Publikováno v:
The American Mathematical Monthly, 2015 Jul . 122(7), 700-707.
Autor:
Hensley, Doug douglashensley@shaw.ca
Publikováno v:
Lute Society of America Quarterly. Winter2019, Vol. 54 Issue 4, p21-25. 5p.
Autor:
Hensley, Doug
Publikováno v:
Transactions of the American Mathematical Society, 1988 Mar 01. 306(1), 307-327.
Externí odkaz:
https://www.jstor.org/stable/2000840
Autor:
HENSLEY, DOUG
Publikováno v:
Wallaces Farmer; Sep2024, Vol. 149 Issue 8, p54-55, 2p
Publikováno v:
The American Mathematical Monthly, 1975 Feb 01. 82(2), 171-173.
Externí odkaz:
https://www.jstor.org/stable/2319668
Autor:
Hensley, Doug
Publikováno v:
The American Mathematical Monthly, 1987 Mar 01. 94(3), 304-306.
Externí odkaz:
https://www.jstor.org/stable/2323405