Zobrazeno 1 - 10
of 129
pro vyhledávání: '"Henry E. Fettis"'
Autor:
Radames R. H. Gebel, Henry E. Fettis
Publikováno v:
Applied optics. 12(10)
Autor:
Henry E. Fettis, Radames R. H. Gebel
Publikováno v:
Applied optics. 12(6)
Autor:
Henry E. Fettis
Publikováno v:
Mathematics of Computation. 45:549-552
The integral \[ ∫ z 1 ( 1 − t 2 ) β − 1 ( 1 − t 1 + t ) μ / 2 ln ( 1 − t 2 ) P ν − 1 μ ( t ) d t \int _z^1 {{{\left ( {\frac {{1 - t}}{2}} \right )}^{\beta - 1}}{{\left ( {\frac {{1 - t}}{{1 + t}}} \right )}^{\mu /2}}\ln \left ( {
Autor:
Henry E. Fettis
Publikováno v:
SIAM Journal on Applied Mathematics. 31:511-518
Trigonometric series are developed for Pearson type IV distributions and probabilities. One development expresses the non-normalized probability as a series of this type, while the other development gives a similar representation for the normalized p
Autor:
Henry E. Fettis
Publikováno v:
SIAM Journal on Mathematical Analysis. 8:978-982
It is shown that, in certain special cases, the incomplete Lipschitz–Hankel integrals are related to incomplete integrals of Hankel–Nicholson type. Integrals of the form
Autor:
Henry E. Fettis
Publikováno v:
Mathematics of Computation. 35:1325-1329
Expressions are obtained for the integrals \[ I λ ( p ) = ∫ 0 π / 2 ( sin λ θ sin θ ) p d θ , J λ ( p ) = ∫ 0 π / 2 ( 1 − cos λ θ sin θ ) p d θ I_\lambda ^{(p)} = \int _0^{\pi /2}{\left ( {\frac {{\sin \lambda \theta
Autor:
Henry E. Fettis
Publikováno v:
Mathematics of Computation. 30:541-545
Values of the first five complex roots of the equations sin z = a z , cos z = a z \sin z = az,\cos z = az and cosh z = a z \cosh z = az are given to 10S, for a = 10 , 5 , 2 , 1.6 , 1.2 , 1 ( .1 ) .3 a = 10,5,2,1.6,1.2,1(.1).3 , and select
Autor:
Henry E. Fettis
Publikováno v:
Mathematics of Computation. 43:557-564
Integrals of the form \[ ∫ 0 π / 2 e i p θ cos q θ d θ , ∫ 0 π / 2 e i p θ sin q θ d θ \int _0^{\pi /2} {{e^{ip\theta }}{{\cos }^q}\theta \,d\theta ,\quad \int _0^{\pi /2} {{e^{ip\theta }}{{\sin }^q}\theta \,d\theta } } \] (p real, Re
Autor:
Henry E Fettis, Robert L. Pexton
Publikováno v:
Journal of Computational Physics. 47:473-476
Autor:
Henry E. Fettis
Publikováno v:
Mathematics of Computation. 33:1059-1064
An asymptotic development is given for estimating the value of the variable χ \chi for which the χ 2 {\chi ^2} -distribution \[ Q ( χ 2 , v ) = 1 Γ ( v / 2 ) ∫ χ 2 / 2 ∞ t v / 2 − 1 e − t d t Q({\chi ^2},v) = \frac {1}{{\Gamma (v/2)}}\in