Zobrazeno 1 - 10
of 16
pro vyhledávání: '"Henry, De Thelin"'
Autor:
Henry, De Thelin
We show that a sequence of smooth analytic curves of the unit ball of the complex plane, for which the genus is bounded by the area, converges to a lamination in a weak sense.
Comment: 9 pages, 1 figure, paper in french
Comment: 9 pages, 1 figure, paper in french
Externí odkaz:
http://arxiv.org/abs/math/0210474
Autor:
Henry de Thelin
Publikováno v:
Journal of the Institute of Mathematics of Jussieu. 19:1-19
Nous construisons un espace adapté à l’étude de l’entropie des applications méromorphes en utilisant des limites projectives. Nous en déduisons un principe variationnel pour ces applications.
Publikováno v:
Israël Journal of Mathematics
Israël Journal of Mathematics, Hebrew University Magnes Press, 2020, 235 (1), pp.213-243. ⟨10.1007/s11856-019-1955-6⟩
Israël Journal of Mathematics, Hebrew University Magnes Press, 2020, 235 (1), pp.213-243. ⟨10.1007/s11856-019-1955-6⟩
Let $\Lambda$ be a complex manifold and let $(f_\lambda)_{\lambda\in \Lambda}$ be a holomorphic family of rational maps of degree $d\geq 2$ of $\mathbb{P}^1$. We define a natural notion of entropy of bifurcation, mimicking the classical definition of
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::e8f0b7f4afd6f54d6c756a4d428cef9a
Autor:
Gabriel Vigny, Henry de Thelin
Publikováno v:
Indiana University Mathematics Journal
Indiana University Mathematics Journal, Indiana University Mathematics Journal, 2021, 70 (1), pp.157-178. ⟨10.1512/iumj.2021.70.8290⟩
Indiana University Mathematics Journal, Indiana University Mathematics Journal, 2021, 70 (1), pp.157-178. ⟨10.1512/iumj.2021.70.8290⟩
Let $f : X\to X$ be a dominating meromorphic map on a compact K\"ahler manifold $X$ of dimension $k$. We extend the notion of topological entropy $h^l_{\mathrm{top}}(f)$ for the action of $f$ on (local) analytic sets of dimension $0\leq l \leq k$. Fo
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::0899f837bf370a28d1f329f238e649a8
Autor:
Henry de Thelin
Publikováno v:
Mathematische Annalen. 362:1-23
Nous montrons un theoreme de semi-continuite superieure pour l’entropie metrique des applications meromorphes.
Autor:
Henry de Thelin
Publikováno v:
Manuscripta Mathematica. 142:347-367
We study pseudo-random holomorphic endomorphisms of $${\mathbb{P}^{k}(\mathbb{C})}$$ . Under some assumptions, we construct a pseudo-random Green current and a pseudo-random Green measure and we prove that this measure has mixing properties.
Autor:
Tien-Cuong Dinh, Henry de Thelin
Publikováno v:
Advances in Mathematics
We study holomorphic automorphisms on compact Kähler manifolds having simple actions on the Hodge cohomology ring. We show for such automorphisms that the main dynamical Green currents admit complex laminar structures (woven currents) and the Green
Autor:
Henry de Thelin
Publikováno v:
Inventiones mathematicae. 172:89-116
Let f be a dominating meromorphic self-map of a compact Kahler manifold. We give an inequality for the Lyapounov exponents of some ergodic measures of f using the metric entropy and the dynamical degrees of f. We deduce the hyperbolicity of some meas
Autor:
Henry de Thelin
Publikováno v:
Israel Journal of Mathematics. 162:151-156
We give a construction of measures with partial sum of Lyapunov exponents bounded from below.
Autor:
Henry de Thelin, Gabriel Vigny
Publikováno v:
Mathematische Zeitschrift
Mathematische Zeitschrift, Springer, 2015, 280 (3-4), pp.919-944. ⟨10.1007/s00209-015-1456-1⟩
Mathematische Zeitschrift, Springer, 2015, 280 (3-4), pp.919-944. ⟨10.1007/s00209-015-1456-1⟩
Let $f:X\to X$ be a dominating meromorphic map of a compact K\"ahler surface of large topological degree. Let $S$ be a positive closed current on $X$ of bidegree $(1,1)$. We consider an ergodic measure $\nu$ of large entropy supported by $\mathrm{sup
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::e579c60866c5fb296eabe84e0327583f
https://hal.archives-ouvertes.fr/hal-03510226
https://hal.archives-ouvertes.fr/hal-03510226