Zobrazeno 1 - 10
of 54
pro vyhledávání: '"Henrique Guzzo"'
Autor:
Ferreira, Ruth Nascimento, Ferreira, Bruno Leonardo Macedo, Junior, Henrique Guzzo, Costa, Bruno Tadeu
Let $\mathfrak{A}$ and $\mathfrak{A}'$ be two $C^*$-algebras with identities $I_{\mathfrak{A}}$ and $I_{\mathfrak{A}'}$, respectively, and $P_1$ and $P_2 = I_{\mathfrak{A}} - P_1$ nontrivial symmetric projections in $\mathfrak{A}$. In this paper we s
Externí odkaz:
http://arxiv.org/abs/2108.00025
Autor:
Ruth Nascimento Ferreira, Bruno Leonardo Macedo Ferreira, Henrique Guzzo Junior, Bruno Tadeu Costa
Publikováno v:
Communications in Algebra. 50:5145-5154
Let $\mathfrak{A}$ and $\mathfrak{A}'$ be two $C^*$-algebras with identities $I_{\mathfrak{A}}$ and $I_{\mathfrak{A}'}$, respectively, and $P_1$ and $P_2 = I_{\mathfrak{A}} - P_1$ nontrivial symmetric projections in $\mathfrak{A}$. In this paper we s
Publikováno v:
Repositório Institucional da USP (Biblioteca Digital da Produção Intelectual)
Universidade de São Paulo (USP)
instacron:USP
Universidade de São Paulo (USP)
instacron:USP
Motivated by the recent progress towards classification of simple finite-dimensional Lie algebras over an algebraically closed field of characteristic 2, we investigate such 15-dimensional Skryabin algebras.
Publikováno v:
Repositório Institucional da USP (Biblioteca Digital da Produção Intelectual)
Universidade de São Paulo (USP)
instacron:USP
Universidade de São Paulo (USP)
instacron:USP
Let $${{\mathfrak {J}}}\, $$ and $${{\mathfrak {J}}}\, ^{'}$$ be Jordan rings. In this paper we study the additivity of n-multiplicative isomorphisms from $${{\mathfrak {J}}}\, $$ onto $${{\mathfrak {J}}}\, ^{'}$$ and of n-multiplicative derivations
Publikováno v:
Repositório Institucional da USP (Biblioteca Digital da Produção Intelectual)
Universidade de São Paulo (USP)
instacron:USP
Universidade de São Paulo (USP)
instacron:USP
We extend to triangular n-matrix rings and Lie n-multiplicative maps a result about Lie multiplicative maps on triangular algebras due to Xiaofei Qi and Jinchuan Hou.
Autor:
Henrique Guzzo Júnior
Publikováno v:
Biblioteca Digital de Teses e Dissertações da USP
Universidade de São Paulo (USP)
instacron:USP
Universidade de São Paulo (USP)
instacron:USP
não disponível In the first part of this monograph, we introduce the concept of join of baric algebras with an idempotent of weight 1 and the related concept of indecomposable (baric) algebra. A theorem of existence and unicity of decompositions fo
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::fd26ecadc3e52a9cb5ac0259333bf783
https://doi.org/10.11606/t.45.1992.tde-20210729-003141
https://doi.org/10.11606/t.45.1992.tde-20210729-003141
Publikováno v:
Repositório Institucional da USP (Biblioteca Digital da Produção Intelectual)
Universidade de São Paulo (USP)
instacron:USP
Universidade de São Paulo (USP)
instacron:USP
The purpose of this note is to prove the following. Suppose $\R$ is a semiprime unity ring having an idempotent element e $\left(e \neq 0, e \neq 1\right)$ which satisfies mild conditions. It is shown that every additive generalized Jordan derivation
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::0b737faafce066241f42880dc41ed11d
Publikováno v:
Repositório Institucional da USP (Biblioteca Digital da Produção Intelectual)
Universidade de São Paulo (USP)
instacron:USP
Universidade de São Paulo (USP)
instacron:USP
Let $\R$ be an alternative ring containing a nontrivial idempotent and $\D$ be a multiplicative Lie-type derivation from $\R$ into itself. Under certain assumptions on $\R$, we prove that $\D$ is almost additive. Let $p_n(x_1, x_2, \cdots, x_n)$ be t
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::e2a031e1817cba94cb94bb964526e7ff
Publikováno v:
Repositório Institucional da USP (Biblioteca Digital da Produção Intelectual)
Universidade de São Paulo (USP)
instacron:USP
Universidade de São Paulo (USP)
instacron:USP
Let R be a unital alternative ring with nontrivial idempotent and D:R→R be a Jordan derivation. Then D is of the form d+δ, where d is a derivation of R and δ is a singular Jordan derivatio...
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::0fe3964209c5687f3a41115951470daf