Zobrazeno 1 - 10
of 45
pro vyhledávání: '"Hendrik Ranocha"'
Publikováno v:
Frontiers in Physics, Vol 10 (2022)
High order entropy stable schemes provide improved robustness for computational simulations of fluid flows. However, additional stabilization and positivity preserving limiting can still be required for variable-density flows with under-resolved feat
Externí odkaz:
https://doaj.org/article/30026c0382fe46ffb641240be0880b96
Autor:
Hendrik Ranocha
Publikováno v:
Results in Applied Mathematics, Vol 1, Iss , Pp - (2019)
Some properties of numerical time integration methods using summation by parts (SBP) operators and simultaneous approximation terms are studied. These schemes can be interpreted as implicit Runge-Kutta methods with desirable stability properties such
Externí odkaz:
https://doaj.org/article/d44cf667332b41dab1d5ffb47d8fde8f
Publikováno v:
Applied Numerical Mathematics. 182:117-147
Patankar-type schemes are linearly implicit time integration methods designed to be unconditionally positivity-preserving. However, there are only little results on their stability or robustness. We suggest two approaches to analyze the performance a
Autor:
Hendrik Ranocha, Andrew R. Winters, Hugo Guillermo Castro, Lisandro Dalcin, Michael Schlottke-Lakemper, Gregor J. Gassner, Matteo Parsani
Publikováno v:
Communications on Applied Mathematics and Computation.
We study a temporal step size control of explicit Runge-Kutta (RK) methods for compressible computational fluid dynamics (CFD), including the Navier-Stokes equations and hyperbolic systems of conservation laws such as the Euler equations. We demonstr
Autor:
Hendrik Ranocha
Publikováno v:
Mathematische Semesterberichte.
Autor:
Pierre Henri, Hendrik Ranocha, Sang A. Park, Bruce T. Tsurutani, Philip Heinisch, C. Goetz, Karl-Heinz Glassmeier, Ingo Richter, Katharina Ostaszewski, Martin Rubin
Publikováno v:
Annales Geophysicae, Vol 39, Pp 721-742 (2021)
Annales geophysicae 39 (2021) p. 721–742.-https://doi.org/10.5194/angeo-39-721-2021--Ann. Geophysicae--0755-0685
Annales Geophysicae
Annales Geophysicae, European Geosciences Union, 2021, 39, pp.721-742. ⟨10.5194/angeo-39-721-2021⟩
Ostaszewski, Katharina; Glassmeier, Karl-Heinz; Goetz, Charlotte; Heinisch, Philip; Henri, Pierre; Park, Sang A.; Ranocha, Hendrik; Richter, Ingo; Rubin, Martin; Tsurutani, Bruce (2021). Steepening of magnetosonic waves in the inner coma of comet 67P/Churyumov–Gerasimenko. Annales geophysicae, 39(4), pp. 721-742. Copernicus Publications 10.5194/angeo-39-721-2021
Annales geophysicae 39 (2021) p. 721–742.-https://doi.org/10.5194/angeo-39-721-2021--Ann. Geophysicae--0755-0685
Annales Geophysicae
Annales Geophysicae, European Geosciences Union, 2021, 39, pp.721-742. ⟨10.5194/angeo-39-721-2021⟩
Ostaszewski, Katharina; Glassmeier, Karl-Heinz; Goetz, Charlotte; Heinisch, Philip; Henri, Pierre; Park, Sang A.; Ranocha, Hendrik; Richter, Ingo; Rubin, Martin; Tsurutani, Bruce (2021). Steepening of magnetosonic waves in the inner coma of comet 67P/Churyumov–Gerasimenko. Annales geophysicae, 39(4), pp. 721-742. Copernicus Publications 10.5194/angeo-39-721-2021
We present a statistical survey of large-amplitude, asymmetric plasma and magnetic field enhancements detected outside the diamagnetic cavity at comet 67P/Churyumov–Gerasimenko from December 2014 to June 2016. Based on the concurrent observations o
Publikováno v:
Numerische Mathematik. 146:875-906
Recently, an approach known as relaxation has been developed for preserving the correct evolution of a functional in the numerical solution of initial-value problems, using Runge-Kutta methods. We generalize this approach to multistep methods, includ
Publikováno v:
Computers & Mathematics with Applications. 80:1343-1359
Recently, relaxation methods have been developed to guarantee the preservation of a single global functional of the solution of an ordinary differential equation. Here, we generalize this approach to guarantee local entropy inequalities for finitely
Autor:
Hendrik Ranocha
Publikováno v:
IMA Journal of Numerical Analysis. 41:654-682
Explicit Runge–Kutta methods are classical and widespread techniques in the numerical solution of ordinary differential equations (ODEs). Considering partial differential equations, spatial semidiscretizations can be used to obtain systems of ODEs
Publikováno v:
Communications on Applied Mathematics and Computation. 2:581-611
In this article, discrete variants of several results from vector calculus are studied for classical finite difference summation by parts operators in two and three space dimensions. It is shown that existence theorems for scalar/vector potentials of