Zobrazeno 1 - 10
of 42
pro vyhledávání: '"Hendrik Boogaard"'
Autor:
Juanma Cintas, Belen Franch, Kristof Van-Tricht, Hendrik Boogaard, Jeroen Degerickx, Inbal Becker-Reshef, Italo Moletto-Lobos, Bertran Mollà-Bononad, Jose A. Sobrino, Sven Gilliams, Zoltan Szantoi
Publikováno v:
International Journal of Applied Earth Observations and Geoinformation, Vol 118, Iss , Pp 103283- (2023)
Crop type maps are essential for a wide range of applications such as crop monitoring, and yield estimation. In addition, Earth Observation (EO) systems allow robust and timely mapping of the earth’s surface, usually based on time-series. Yet, exis
Externí odkaz:
https://doaj.org/article/caef17ebc6d949f88af2ac0679e2c77b
Autor:
Hendrik Boogaard, Arun Kumar Pratihast, Juan Carlos Laso Bayas, Santosh Karanam, Steffen Fritz, Kristof Van Tricht, Jeroen Degerickx, Sven Gilliams
Publikováno v:
PLoS ONE, Vol 18, Iss 7, p e0287731 (2023)
Reference data is key to produce reliable crop type and cropland maps. Although research projects, national and international programs as well as local initiatives constantly gather crop related reference data, finding, collecting, and harmonizing da
Externí odkaz:
https://doaj.org/article/6056ee0a70af48e58eb69e1675bafe1d
Publikováno v:
Environmental Research Letters, Vol 18, Iss 9, p 094062 (2023)
Predictor inputs and labels (e.g. yield data) for crop yield forecasting are not always available at the same spatial resolution. Common statistical and machine learning methods require inputs and labels at the same resolution. Therefore, they cannot
Externí odkaz:
https://doaj.org/article/a12310aa6c09406e92f2d96ad3591118
Autor:
Carolien Toté, Domingos Patricio, Hendrik Boogaard, Raymond van der Wijngaart, Elena Tarnavsky, Chris Funk
Publikováno v:
Remote Sensing, Vol 7, Iss 2, Pp 1758-1776 (2015)
Satellite derived rainfall products are useful for drought and flood early warning and overcome the problem of sparse, unevenly distributed and erratic rain gauge observations, provided their accuracy is well known. Mozambique is highly vulnerable to
Externí odkaz:
https://doaj.org/article/3fd077473a9845c6a21795405c395b24
Autor:
Kristof Van Tricht, Jeroen Degerickx, Sven Gilliams, Daniele Zanaga, Marjorie Battude, Alex Grosu, Joost Brombacher, Myroslava Lesiv, Juan Carlos Laso Bayas, Santosh Karanam, Steffen Fritz, Inbal Becker-Reshef, Belén Franch, Bertran Mollà-Bononad, Hendrik Boogaard, Arun Kumar Pratihast, Zoltan Szantoi
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_________::48f763c8ea905a55e4e1c828435f8ac8
https://doi.org/10.5194/essd-2023-184-supplement
https://doi.org/10.5194/essd-2023-184-supplement
Autor:
Kristof Van Tricht, Jeroen Degerickx, Sven Gilliams, Daniele Zanaga, Marjorie Battude, Alex Grosu, Joost Brombacher, Myroslava Lesiv, Juan Carlos Laso Bayas, Santosh Karanam, Steffen Fritz, Inbal Becker-Reshef, Belén Franch, Bertran Mollà-Bononad, Hendrik Boogaard, Arun Kumar Pratihast, Zoltan Szantoi
The challenge of global food security in the face of population growth, conflict and climate change requires a comprehensive understanding of cropped areas, irrigation practices and the distribution of major commodity crops like maize and wheat. Howe
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::dd734bea166e6da5c9466ad6a0bac210
https://essd.copernicus.org/preprints/essd-2023-184/
https://essd.copernicus.org/preprints/essd-2023-184/
Autor:
Hendrik Boogaard, Ian McCallum, Sven Gilliams, Laurent Tits, Sander Janssen, Florian Franziskakis, Ian Jarvis
Open and harmonized in-situ data is crucial for monitoring agricultural resources, addressing food security, and fostering resources sustainability. It will improve capacity to produce relevant, timely, accurate and updated information on agricultura
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_________::253a9bdfc2d0fc4be0c8851fa3d57432
https://doi.org/10.5194/egusphere-egu23-8850
https://doi.org/10.5194/egusphere-egu23-8850
Autor:
Tanja Cegnar, Hendrik Boogaard, Klara Finkele, Branislava Lalic, Joanna Raymond, Saskia Lifka, David M. Schultz, Vieri Tarchiani
Publikováno v:
Advances in Science and Research 20 (2023)
Advances in Science and Research, 20, 9–16
Cegnar, T, Boogaard, H, Finkele, K, Lalic, B, Raymond, J, Lifka, S, Schultz, D M & Tarchiani, V 2023, ' Toward effective communication of agrometeorological services ', Advances in Science and Research, vol. 20, pp. 9-16 . https://doi.org/10.5194/asr-20-9-2023
Advances in Science and Research, 20, 9–16
Cegnar, T, Boogaard, H, Finkele, K, Lalic, B, Raymond, J, Lifka, S, Schultz, D M & Tarchiani, V 2023, ' Toward effective communication of agrometeorological services ', Advances in Science and Research, vol. 20, pp. 9-16 . https://doi.org/10.5194/asr-20-9-2023
Agrometeorological services are a subset of climate services targeted to support farmers' tactical and strategic decisions, with the potential to support farmers' capacity to cope with climate variability and change, as well as strengthen their resil
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::8f5ec8d4fe0b7333d00a623a0783703c
https://research.wur.nl/en/publications/toward-effective-communication-of-agrometeorological-services
https://research.wur.nl/en/publications/toward-effective-communication-of-agrometeorological-services
Autor:
Dilli Paudel, Allard de Wit, Hendrik Boogaard, Diego Marcos, Sjoukje Osinga, Ioannis N. Athanasiadis
Publikováno v:
Computers and Electronics in Agriculture, 206
Computers and Electronics in Agriculture 206 (2023)
Computers and Electronics in Agriculture 206 (2023)
Machine learning models for crop yield forecasting often rely on expert-designed features or predictors. The effectiveness and interpretability of these handcrafted features depends on the expertise of the people designing them. Neural networks have
Autor:
Dilli Paudel, Hendrik Boogaard, Allard de Wit, Marijn van der Velde, Martin Claverie, Luigi Nisini, Sander Janssen, Sjoukje Osinga, Ioannis N. Athanasiadis
Publikováno v:
Field Crops Research 276 (2022)
Field Crops Research, 276
Field Crops Research, 276
Crop yield forecasting at national level relies on predictors aggregated from smaller spatial units to larger ones according to harvested crop areas. Such crop areas come from land cover maps or reported statistics, both of which can have errors and
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::4a600ac711b584e743e37bc1954576fa
https://research.wur.nl/en/publications/machine-learning-for-regional-crop-yield-forecasting-in-europe
https://research.wur.nl/en/publications/machine-learning-for-regional-crop-yield-forecasting-in-europe