Zobrazeno 1 - 5
of 5
pro vyhledávání: '"Hemo, Tamir"'
Autor:
Hemo, Tamir
Motivated by the study of the local and global Langlands correspondence from a geometric prespective, we establish two results of a general nature regarding categories of sheaves in algebraic geometry. The first result, motivated by the work of Drinf
We present a uniform theory of constructible sheaves on arbitrary schemes with coefficients in topological or even condensed rings. This is accomplished by defining lisse sheaves to be the dualizable objects in the derived infinity-category of pro\'e
Externí odkaz:
http://arxiv.org/abs/2305.18131
Publikováno v:
Alg. Number Th. 18 (2024) 499-536
We prove a K\"unneth-type equivalence of derived categories of lisse and constructible Weil sheaves on schemes in characteristic $p > 0$ for various coefficients, including finite discrete rings, algebraic field extensions $E \supset \mathbf Q_\ell$,
Externí odkaz:
http://arxiv.org/abs/2012.02853
Autor:
Hemo, Tamir
We show that averages on geometrically finite Fuchsian groups, when embedded via a representation into a space of matrices, have a homogeneous asymptotic limit under appropriate scaling. This generalizes some of the results of Maucourant to subgroups
Externí odkaz:
http://arxiv.org/abs/1806.00576
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.