Zobrazeno 1 - 10
of 102
pro vyhledávání: '"Helminck, G."'
Autor:
Helminck, G. F., Twilt, F.
An elliptic Newton flow is a dynamical system that can be interpreted as a continuous version of Newton's iteration method for finding the zeros of an elliptic function f. Previous work focusses on structurally stable flows (i.e., the phase portraits
Externí odkaz:
http://arxiv.org/abs/1702.06084
Autor:
Helminck, G. F.1 (AUTHOR) g.f.helminck@uva.nl
Publikováno v:
Theoretical & Mathematical Physics. Aug2023, Vol. 216 Issue 2, p1124-1141. 18p.
Autor:
Helminck, G. F., Twilt, F.
In our previous paper we associated to each non-constant elliptic function $f$ on a torus $T$ a dynamical system, the elliptic Newton flow corresponding to $f$. We characterized the functions for which these flows are structurally stable and showed a
Externí odkaz:
http://arxiv.org/abs/1609.01323
Autor:
Helminck, G. F., Twilt, F.
A Newton graph of order $r( \geqslant 2)$ is a cellularly embedded toroidal graph on $r$ vertices, $2r$ edges and $r$ faces that fulfils certain combinatorial properties (Euler, Hall). The significance of these graphs relies on their role in the stud
Externí odkaz:
http://arxiv.org/abs/1609.01335
Autor:
Helminck, G. F., Twilt, F.
Newton flows are dynamical systems generated by a continuous, desingularized Newton method for mappings from a Euclidean space to itself. We focus on the special case of meromorphic functions on the complex plane. Inspired by the analogy between the
Externí odkaz:
http://arxiv.org/abs/1609.01267
Autor:
Helminck, G. F.1 (AUTHOR) g.f.helminck@uva.nl, Poberezhny, V. A.2,3,4 (AUTHOR), Polenkova, S. V.5 (AUTHOR)
Publikováno v:
Theoretical & Mathematical Physics. Oct2022, Vol. 213 Issue 1, p1348-1361. 14p.
Autor:
Helminck, G. F., van de Leur, J. W.
We shown that, if you have two planes in the Segal-Wilson Grassmannian that have an intersection of finite codimension, then the corresponding solutions of the KP hierarchy are linked by B\"acklund-Darboux transformations (BDT). The pseudodifferentia
Externí odkaz:
http://arxiv.org/abs/solv-int/9806009
Autor:
Helminck, G. F., van de Leur, J. W.
In this paper we give a geometric description in terms of the Grassmann manifold of Segal and Wilson, of the reduction of the KP hierarchy known as the vector $k$-constrained KP hierarchy. We also show in a geometric way that these hierarchies are eq
Externí odkaz:
http://arxiv.org/abs/solv-int/9706004
Autor:
Helminck, A. G., Helminck, G. F.
Publikováno v:
Transactions of the American Mathematical Society, 1998 Nov 01. 350(11), 4669-4691.
Externí odkaz:
https://www.jstor.org/stable/117805
Autor:
Helminck, G. F., Weenink, J. A.
Publikováno v:
Lobachevskii Journal of Mathematics; Sep2023, Vol. 44 Issue 9, p3927-3940, 14p