Zobrazeno 1 - 10
of 57
pro vyhledávání: '"Hejna, Agnieszka"'
Autor:
Dziubański, Jacek, Hejna, Agnieszka
Let $\{P_t\}_{t>0}$ be the Dunkl-Poisson semigroup associated with a root system $R\subset \mathbb R^N$ and a multiplicity function $k\geq 0$. Analogously to the classical theory, we say that a bounded measurable function $f$ defined on $\mathbb R^N$
Externí odkaz:
http://arxiv.org/abs/2408.12399
Autor:
Dziubański, Jacek, Hejna, Agnieszka
On $\mathbb R^N$ equipped with a root system $R$, multiplicity function $k \geq 0$, and the associated measure $dw(\mathbf{x})=\prod_{\alpha \in R}|\langle \mathbf{x},\alpha\rangle|^{k(\alpha)}\,d\mathbf{x}$, we consider a (non-radial) kernel ${K}(\m
Externí odkaz:
http://arxiv.org/abs/2302.00790
Autor:
Dziubański, Jacek, Hejna, Agnieszka
On $\mathbb R^N$ equipped with a root system $R$ and a multiplicity function $k>0$, we study the generalized (Dunkl) translations $\tau_{\mathbf x}g(-\mathbf y)$ of not necessarily radial kernels $g$. Under certain regularity assumptions on $g$, we d
Externí odkaz:
http://arxiv.org/abs/2211.02518
Autor:
Dziubański, Jacek, Hejna, Agnieszka
On $\mathbb R^N$ equipped with a normalized root system $R$, a multiplicity function $k(\alpha) > 0$, and the associated measure $$ dw(\mathbf x)=\prod_{\alpha\in R}|\langle \mathbf x,\alpha\rangle|^{k(\alpha)}\, d\mathbf x, $$ we consider a Dunkl Sc
Externí odkaz:
http://arxiv.org/abs/2204.03443
Autor:
Dziubański, Jacek, Hejna, Agnieszka
On $\mathbb R^N$ equipped with a normalized root system $R$, a multiplicity function $k(\alpha) > 0$, and the associated measure $$ dw(\mathbf x)=\prod_{\alpha\in R}|\langle \mathbf x,\alpha\rangle|^{k(\alpha)}\, d\mathbf x, $$ let $h_t(\mathbf x,\ma
Externí odkaz:
http://arxiv.org/abs/2111.03513
Autor:
Hejna, Agnieszka
In this article, we prove dimension-free upper bound for the $L^p$-norms of the vector of Riesz transforms in the rational Dunkl setting. Our main technique is Bellman function method adapted to the Dunkl setting.
Comment: Research supported by
Comment: Research supported by
Externí odkaz:
http://arxiv.org/abs/2110.15735
Autor:
Dziubański, Jacek, Hejna, Agnieszka
The aim of this paper is to prove upper and lower $L^p$ estimates, $1Comment: arXiv admin note: text overlap with arXiv:1910.06433
Externí odkaz:
http://arxiv.org/abs/2005.00793
Autor:
Hejna, Agnieszka
For a normalized root system $R$ in $\mathbb R^N$ and a multiplicity function $k\geq 0$ let $\mathbf N=N+\sum_{\alpha \in R} k(\alpha)$. We denote by $dw(\mathbf{x})=\Pi_{\alpha \in R}|\langle \mathbf{x},\alpha \rangle|^{k(\alpha)}\,d\mathbf{x}$ the
Externí odkaz:
http://arxiv.org/abs/2004.10124
Autor:
Hejna, Agnieszka
For a normalized root system $R$ in $\mathbb R^N$ and a multiplicity function $k\geq 0$ let $\mathbf N=N+\sum_{\alpha \in R} k(\alpha)$. Let $L=-\Delta +V$, $V\geq 0$, be the Dunkl--Schr\"odinger operator on $\mathbb R^N$. Assume that there exists $q
Externí odkaz:
http://arxiv.org/abs/1912.11352
Autor:
Dziubański, Jacek, Hejna, Agnieszka
On $\mathbb R^N$ equipped with a normalized root system $R$ and a multiplicity function $k\geq 0$ let us consider a (non-radial) kernel $K(\mathbf x)$ which has properties similar to those from the classical theory. We prove that a singular integral
Externí odkaz:
http://arxiv.org/abs/1910.06433