Zobrazeno 1 - 10
of 41
pro vyhledávání: '"Hejda, Tomáš"'
Autor:
Hejda, Tomáš, Kala, Vítězslav
Publikováno v:
J. Number Theory 234 (2022), 140-152
A positive quadratic form is $(k,\ell)$-universal if it represents all the numbers $kx+\ell$ where $x$ is a non-negative integer, and almost $(k,\ell)$-universal if it represents all but finitely many of them. We prove that for any $k,\ell$ such that
Externí odkaz:
http://arxiv.org/abs/1906.02538
Autor:
Hejda, Tomáš, Kala, Vítězslav
Publikováno v:
In Journal of Number Theory May 2022 234:140-152
Autor:
Hejda, Tomáš, Kala, Vítězslav
Publikováno v:
Manuscripta Math. 163 (2020), 263-278
Let $K=\mathbb Q(\sqrt D)$ be a real quadratic field. We consider the additive semigroup $\mathcal O_K^+(+)$ of totally positive integers in $K$ and determine its generators (indecomposable integers) and relations; they can be nicely described in ter
Externí odkaz:
http://arxiv.org/abs/1706.09178
Autor:
Hejda, Tomáš
Let $\beta\in(1,2)$ be a Pisot unit and consider the symmetric $\beta$-expansions. We give a necessary and sufficient condition for the associated Rauzy fractals to form a tiling of the contractive hyperplane. For $\beta$ a $d$-Bonacci number, i.e.,
Externí odkaz:
http://arxiv.org/abs/1503.07744
Autor:
Hejda, Tomáš, Steiner, Wolfgang
Publikováno v:
Acta Arithmetica 183 (2018) , 35-51
We study rational numbers with purely periodic R\'enyi $\beta$-expansions. For bases $\beta$ satisfying $\beta^2=a\beta+b$ with $b$ dividing $a$, we give a necessary and sufficient condition for $\gamma(\beta)=1$, i.e., that all rational numbers $p/q
Externí odkaz:
http://arxiv.org/abs/1411.2419
Autor:
Hejda, Tomáš, Pelantová, Edita
For a real number $\beta>1$, Erd\H{o}s, Jo\'o and Komornik study distances between consecutive points in the set $X^m(\beta)=\bigl\{\sum_{j=0}^n a_j \beta^j : n\in\mathbb N,\,a_j\in\{0,1,\dots,m\}\bigr\}$. Pisot numbers play a crucial role for the pr
Externí odkaz:
http://arxiv.org/abs/1312.0653
Publikováno v:
9th International Conference, WORDS 2013, Turku : Finland (2013)
We study balancedness properties of words given by the Arnoux-Rauzy and Brun multi-dimensional continued fraction algorithms. We show that almost all Brun words on 3 letters and Arnoux-Rauzy words over arbitrary alphabets are finitely balanced; in pa
Externí odkaz:
http://arxiv.org/abs/1308.6694
Publikováno v:
In Agricultural and Forest Meteorology 15 June 2019 271:54-63
Autor:
Hejda, Tomáš
Publikováno v:
RAIRO-Theor. Inf. Appl. 46 (2012) 107-122
Any amicable pair \phi, \psi{} of Sturmian morphisms enables a construction of a ternary morphism \eta{} which preserves the set of infinite words coding 3-interval exchange. We determine the number of amicable pairs with the same incidence matrix in
Externí odkaz:
http://arxiv.org/abs/1111.1578
Publikováno v:
Kybernetika 49 (2013) 258-279
We consider positional numeration systems with negative real base $-\beta$, where $\beta>1$, and study the extremal representations in these systems, called here the greedy and lazy representations. We give algorithms for determination of minimal and
Externí odkaz:
http://arxiv.org/abs/1110.6327