Zobrazeno 1 - 10
of 23
pro vyhledávání: '"Heinrich P. Lotz"'
Autor:
Heinrich P. Lotz
Publikováno v:
Israel Journal of Mathematics. 176:209-220
We consider a Dedekind σ-complete Banach lattice E whose dual is weakly sequentially complete. Suppose that E has a positive element u and a family of positive operators $$ \mathcal{G} $$ such that We show that such a space is a Grothendieck space,
Autor:
Heinrich P. Lotz
Publikováno v:
Positivity. 12:119-132
We show that in the dual of Weak L1 the subspace of all rearrangement invariant continuous linear functionals is lattice isometric to a space L1(μ) and is the linear hull of the maximal elements of the dual unit ball. We also show that the dual of W
Autor:
Heinrich P. Lotz, N. Peck
Publikováno v:
Proceedings of the American Mathematical Society. 126:75-84
We prove that every separable Banach lattice is lattice isometric to a closed sublattice of the Banach envelope of Weak L 1 . L^{1}.
Autor:
Heinrich P. Lotz, N. T. Peck
Publikováno v:
Proceedings of the American Mathematical Society; Jan1998, Vol. 126 Issue 1, p75-84, 10p
Autor:
Heinrich P. Lotz
Publikováno v:
Mathematische Zeitschrift. 178:145-156
Autor:
Heinrich P. Lotz
Publikováno v:
Mathematische Zeitschrift. 190:207-220
Autor:
Donald I. Cartwright, Heinrich P. Lotz
Publikováno v:
Archiv der Mathematik. 28:525-532
Autor:
Heinrich P. Lotz
Publikováno v:
Transactions of the American Mathematical Society. 211:85-100
Let F be a closed sublattice of a Banach lattice G. We show that any positive linear mapping from F into L 1 ( μ ) {L^1}(\mu ) or C ( X ) C(X) for a Stonian space X has a positive norm preserving extension to G. A dual result for positive norm prese
Publikováno v:
Proceedings of the Edinburgh Mathematical Society. 22:233-240
It is a most implausible fact that a one-to-one operator from c0 into a Banach space which maps the unit ball of c0 onto a closed set is necessarily an isomorphism.In this paper the term semi-embedding denotes a one-to-one operator from one Banach sp