Zobrazeno 1 - 10
of 128
pro vyhledávání: '"Heiner Zieschang"'
This book is an introduction to classical knot theory. Topics covered include: different constructions of knots, knot diagrams, knot groups, fibred knots, characterisation of torus knots, prime decomposition of knots, cyclic coverings and Alexander p
Autor:
Elena Alexandrovna Kudryavtseva, Heiner Zieschang, Semeon Antonovich Bogatyi, Daciberg Lima Gonçalves
Publikováno v:
Matematicheskie Zametki. 75:13-19
Publikováno v:
Sbornik: Mathematics. 193:311-327
A 4-fold covering of a surface of genus 2 by a surface of genus 5 is constructed that cannot be represented as a composite of two non-trivial open maps. This demonstrates the incompleteness of Baildon's obstruction. Various results on the decomposabi
Publikováno v:
Proceedings of the American Mathematical Society. 130:3117-3123
Any 3-manifold 1-dominates at most finitely many 3-manifolds supporting S 3 S^3 geometry.
Publikováno v:
Repositório Institucional da USP (Biblioteca Digital da Produção Intelectual)
Universidade de São Paulo (USP)
instacron:USP
Universidade de São Paulo (USP)
instacron:USP
Let f:M1→M2 be a continuous map and c:M1→M2 a constant map between closed (not necessarily orientable) surfaces. By definition the pair (f,c) has the Wecken property if f can be deformed into a map f' such that the number of coincidence points of
Publikováno v:
Математический сборник. 193:3-20
Publikováno v:
Repositório Institucional da USP (Biblioteca Digital da Produção Intelectual)
Universidade de São Paulo (USP)
instacron:USP
Universidade de São Paulo (USP)
instacron:USP
Let $f \colon S_h \to S_g$ be a continuous map and $c \colon S_h \to S_g$ a constant map between closed orientable surfaces of genus h,g, respectively. By definition the pair (f,c) has the Wecken property if f can be deformed into a map $f'$ such tha
Publikováno v:
Mathematische Zeitschrift. 236:419-452
Let \(f \colon S_h \to S_g\) be a continuous mapping between orientable closed surfaces of genus h and g and let c denote the constant map \(c \colon S_h \to S_g\) with \(c(S_h) = c\in S_g\). Let \(\varrho(f)\) be the minimal number of roots of f' am
Publikováno v:
Comptes Rendus de l'Académie des Sciences - Series I - Mathematics. 324:323-326
Resume Les varietes M considerees dans cette Note sont des varietes de Seifert orientables, de dimension 3, de base une sphere S2 et de groupe fondamental π1 ( M ) infini. L'objectif est de calculer les cup produits definissant la structure d'anneau