Zobrazeno 1 - 10
of 29
pro vyhledávání: '"Hazar Abu-Khuzam"'
Publikováno v:
International Journal of Mathematics and Mathematical Sciences, Vol 2005, Iss 9, Pp 1387-1391 (2005)
A ring is called semi-weakly periodic if each element which is not in the center or the Jacobson radical can be written as the sum of a potent element and a nilpotent element. After discussing some basic properties of such rings, we investigate their
Externí odkaz:
https://doaj.org/article/e26ea76c0e53487fa95a6fd7a805b09d
Autor:
Hazar Abu-Khuzam, Adil Yaqub
Publikováno v:
International Journal of Mathematics and Mathematical Sciences, Vol 17, Iss 4, Pp 667-670 (1994)
Let R be a ring, and let C denote the center of R. R is said to have a prime center if whenever ab belongs to C then a belongs to C or b belongs to C. The structure of certain classes of these rings is studied, along with the relation of the notion o
Externí odkaz:
https://doaj.org/article/ed55dffc94ee4b9ea39b663135ea8684
Autor:
Hazar Abu-Khuzam, Adil Yaqub
Publikováno v:
International Journal of Mathematics and Mathematical Sciences, Vol 2006 (2006)
Let R be a ring such that every zero divisor x is expressible as a sum of a nilpotent element and a potent element of R:x=a+b, where a is nilpotent, b is potent, and ab=ba. We call such a ring a D*-ring. We give the structure of periodic D*-ring, wea
Externí odkaz:
https://doaj.org/article/93dbcd310b714fc9bbf38fa768ff31f0
Autor:
Hazar Abu-Khuzam
Publikováno v:
International Journal of Mathematics and Mathematical Sciences, Vol 12, Iss 3, Pp 463-466 (1989)
It is proved that certain rings satisfying generalized-commutator constraints of the form [xm,yn,yn,...,yn]=0 with m and n depending on x and y, must have nil commutator ideal.
Externí odkaz:
https://doaj.org/article/20f9f25a22dc4e168e4abf963a084022
Autor:
Hazar Abu-Khuzam, Adil Yaqub
Publikováno v:
International Journal of Mathematics and Mathematical Sciences, Vol 4, Iss 1, Pp 101-107 (1981)
Let n be a fixed positive integer. Let R be a ring with identity which satisfies (i) xnyn=ynxn for all x,y in R, and (ii) for x,y in R, there exists a positive integer k=k(x,y) depending on x and y such that xkyk=ykxkand (n,k)=1. Then R is commutativ
Externí odkaz:
https://doaj.org/article/423d95122b22484a98c73ef9545cea2b
Autor:
Hazar Abu-Khuzam, Adil Yaqub
Publikováno v:
International Journal of Mathematics and Mathematical Sciences, Vol 7, Iss 2, Pp 403-406 (1984)
Let R be a ring (not necessarily with identity) and let N denote the set of nilpotent elements of R. Suppose that (i) N is commutative, (ii) for every x in R, there exists a positive integer k=k(x) and a polynomial f(λ)=fx(λ) with integer coefficie
Externí odkaz:
https://doaj.org/article/7ef79ffb91884bd88b272333de539725
Autor:
Hazar Abu-Khuzam, Adil Yaqub
Publikováno v:
International Journal of Mathematics and Mathematical Sciences, Vol 6, Iss 1, Pp 119-124 (1983)
Let R be a ring and let N denote the set of nilpotent elements of R. Let Z denote the center of R. Suppose that (i) N is commutative, (ii) for every x in R there exists x′ϵ such that x−x2x′ϵN, where denotes the subring generated by x, (iii) f
Externí odkaz:
https://doaj.org/article/474b8cbc666243e59c3e01ea87feaa1b
Autor:
Hazar Abu-Khuzam
Publikováno v:
International Journal of Mathematics and Mathematical Sciences, Vol 11, Iss 1, Pp 5-8 (1988)
We give the structure of certain rings which are multiplicatively generated by nilpotents or multiplicatively generated by idempotents and nilpotents.
Externí odkaz:
https://doaj.org/article/88fd8b62be0a4fe9ac8ab9b92ad18d69
Autor:
Hazar Abu-Khuzam
Publikováno v:
International Journal of Algebra. 17:47-50
Autor:
Hazar Abu-Khuzam, Adil Yaqub
Publikováno v:
Publicationes Mathematicae Debrecen. 30:47-51