Zobrazeno 1 - 7
of 7
pro vyhledávání: '"Hayder R. Hashim"'
Autor:
Ali S. Athab, Hayder R. Hashim
Publikováno v:
Baghdad Science Journal, Vol 21, Iss 6 (2024)
As it is well known, there are an infinite number of primes in special forms such as Fermat's two squares form, p=x^2+y^2 or its generalization, p=x^2+y^4, where the unknowns x, y, and p represent integers. The main goal of this paper is to see if th
Externí odkaz:
https://doaj.org/article/962d75dfcd8f41a18aaf06d507eb2636
Autor:
Ali Sehen Athab, HAYDER R. HASHIM
Publikováno v:
Wasit Journal for Pure Sciences, Vol 2, Iss 2 (2023)
In 1970, Motohashi proved that there are an infinite number of primes having the form p=x^2+y^2+1 for some nonzero integers x and y. In this paper, we present a technique for studying the solutions of the equation p=x^2+y^2+1, where the unknowns are
Externí odkaz:
https://doaj.org/article/66097d57cd6f4e8a9e231101ea36923f
Autor:
Ali Sehen Athab, Hayder R. Hashim
Publikováno v:
Journal of Mathematics and Statistics Studies. 4:41-57
Landau’s conjecture and Shanks’ conjecture state that there are infinitely many prime numbers of the forms x2+1 and x4+1 for some nonzero integer , respectively. In this paper, we present a technique for studying whether or not there are infinite
Autor:
Hayder R. Hashim
Publikováno v:
Archivum Mathematicum. :189-197
Publikováno v:
Afrika Matematika. 34
Autor:
Hayder R. Hashim
Publikováno v:
Boletín de la Sociedad Matemática Mexicana. 27
Let $$\{V_n(P,Q)\}$$ be the Lucas sequence of the second kind at the nonzero relatively prime parameters P and Q. In this paper, we present techniques for studying the solutions (x, n) with $$x \ge 2, n \ge 0$$ of any Diophantine equation of the form
Publikováno v:
Rad Hrvatske akademije znanosti i umjetnosti. Matematičke znanosti
Issue 546=25
Issue 546=25
ITRU cryptosystem is a public key cryptosystem and one of the known variants of NTRU cryptosystem. Instead of working in a truncated polynomial ring, ITRU cryptosystem is based on the ring of integers. The authors claimed that ITRU has better feature
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::e23c9f69f109f4e6df7c2a034e7e47b9
http://arxiv.org/abs/2005.09258
http://arxiv.org/abs/2005.09258