Zobrazeno 1 - 10
of 57
pro vyhledávání: '"Hayajneh, Mostafa"'
Autor:
Freewan, Shaima'a, Hayajneh, Mostafa
Let $A_i$ and $B_i$ be positive definite matrices for every $i=1,\cdots,m.$ Let $Z=[Z_{ij}]$ be the block matrix, where $Z_{ij}=B_i^{^\frac{1}{_2}}\left(\displaystyle\sum_{k=1}^mA_k\right)B_j^{^\frac{1}{_2}}$ for every $ i,j=~1,\cdots,m$. It is shown
Externí odkaz:
http://arxiv.org/abs/2401.00337
Autor:
Freewan, Shaima'a, Hayajneh, Mostafa
Let $A_i$ and $B_i$ be positive definite matrices for all $i=1,\cdots,m.$ It is shown that $$\left|\left|\sum_{i=1}^m(A_i^2\sharp B_i^2)^r\right|\right|_1\leq\left|\left|\left(\left(\sum_{i=1}^mA_i\right)^{\frac{pr}{_2}}\left(\sum_{i=1}^mB_i\right)^{
Externí odkaz:
http://arxiv.org/abs/2210.14023
Autor:
Freewan, Shaima'a, Hayajneh, Mostafa
Publikováno v:
In Linear Algebra and Its Applications 1 August 2023 670:104-120
The investigation of the relation among the distances of an arbitrary point in the Euclidean space $\mathbb{R}^n$ to the vertices of a regular $n$-simplex in that space has led us to the study of simplices having a regular facet. Calling an $n$-simpl
Externí odkaz:
http://arxiv.org/abs/1701.08833
If $S$ is a given regular $n$-simplex, $n \ge 2$, of edge length $a$, then the distances $a_1$, $\cdots$, $a_{n+1}$ of an arbitrary point in its affine hull to its vertices are related by the fairly known elegant relation $\phi_{n+1} (a,a_1,\cdots,a_
Externí odkaz:
http://arxiv.org/abs/1701.00407
If $S$ is a given regular $d$-simplex of edge length $a$ in the $d$-dimensional Euclidean space $\mathcal{E}$, then the distances $t_1$, $\cdots$, $t_{d+1}$ of an arbitrary point in $\mathcal{E}$ to the vertices of $S$ are related by the elegant rela
Externí odkaz:
http://arxiv.org/abs/1609.06552
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Publikováno v:
The Mathematical Gazette, 2018 Nov 01. 102(555), 523-527.
Externí odkaz:
https://www.jstor.org/stable/26539051
Autor:
Hayajneh, Mostafa1 (AUTHOR), Hayajneh, Saja2 (AUTHOR), Kittaneh, Fuad2 (AUTHOR) fkitt@ju.edu.jo
Publikováno v:
Positivity. Jul2022, Vol. 26 Issue 3, p1-9. 9p.
Publikováno v:
Journal of Operator Theory, 2017 Jan 01. 77(1), 77-86.
Externí odkaz:
https://www.jstor.org/stable/26502158