Zobrazeno 1 - 10
of 2 061
pro vyhledávání: '"Hawkins, A. E."'
Autor:
Dao, Viet Hung, Gunawan, David, Kohn, Robert, Tran, Minh-Ngoc, Hawkins, Guy E., Brown, Scott D.
Evidence accumulation models (EAMs) are an important class of cognitive models used to analyze both response time and response choice data recorded from decision-making tasks. Developments in estimation procedures have helped EAMs become important bo
Externí odkaz:
http://arxiv.org/abs/2302.10389
Autor:
Dao, Viet-Hung, Gunawan, David, Tran, Minh-Ngoc, Kohn, Robert, Hawkins, Guy E., Brown, Scott D.
Model comparison is the cornerstone of theoretical progress in psychological research. Common practice overwhelmingly relies on tools that evaluate competing models by balancing in-sample descriptive adequacy against model flexibility, with modern ap
Externí odkaz:
http://arxiv.org/abs/2102.06814
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Publikováno v:
In Pathology October 2024
Publikováno v:
In Journal of Choice Modelling December 2023 49
It is commonly assumed that a specific testing occasion (task, design, procedure, etc.) provides insights that generalise beyond that occasion. This assumption is infrequently carefully tested in data. We develop a statistically principled method to
Externí odkaz:
http://arxiv.org/abs/1910.07185
Publikováno v:
In Journal of Mathematical Psychology August 2023 115
Many psychological experiments have subjects repeat a task to gain the statistical precision required to test quantitative theories of psychological performance. In such experiments, time-on-task can have sizable effects on performance, changing the
Externí odkaz:
http://arxiv.org/abs/1906.10838
Autor:
Tran, Minh-Ngoc, Scharth, Marcel, Gunawan, David, Kohn, Robert, Brown, Scott D., Hawkins, Guy E.
Recent advances in Markov chain Monte Carlo (MCMC) extend the scope of Bayesian inference to models for which the likelihood function is intractable. Although these developments allow us to estimate model parameters, other basic problems such as esti
Externí odkaz:
http://arxiv.org/abs/1906.06020