Zobrazeno 1 - 10
of 80
pro vyhledávání: '"Haut, T."'
This paper derives and analyzes new diffusion synthetic acceleration (DSA) preconditioners for the SN transport equation when discretized with a high-order (HO) discontinuous Galerkin (DG) discretization. DSA preconditioners address the need to accel
Externí odkaz:
http://arxiv.org/abs/1810.11082
We propose a graph-based sweep algorithm for solving the steady state, mono-energetic discrete ordinates on meshes of high-order curved mesh elements. Our spatial discretization consists of arbitrarily high-order discontinuous Galerkin finite element
Externí odkaz:
http://arxiv.org/abs/1810.11080
Publikováno v:
The Journal of Chemical Physics, 146(11), 114107 (2017)
Recent machine learning methods make it possible to model potential energy of atomic configurations with chemical-level accuracy (as calculated from ab-initio calculations) and at speeds suitable for molecular dynam- ics simulation. Best performance
Externí odkaz:
http://arxiv.org/abs/1612.00193
We present a numerical method for solving the time-independent thermal radiative transfer (TRT) equation or the neutron transport (NT) equation when the opacity or cross-section varies rapidly in energy (frequency). The approach is based on a rigorou
Externí odkaz:
http://arxiv.org/abs/1604.01451
Autor:
Haut, T. H.
Publikováno v:
Connect to online resource.
Thesis (Ph.D.)--University of Colorado at Boulder, 2008.
Source: Dissertation Abstracts International, Volume: 69-11, Section: B, page: 6841. Adviser: Mark J. Ablowitz.
Source: Dissertation Abstracts International, Volume: 69-11, Section: B, page: 6841. Adviser: Mark J. Ablowitz.
The manuscript presents a new technique for computing the exponential of skew-Hermitian operators. Principal advantages of the proposed method include: stability even for large time-steps, the possibility to parallelize in time over many characterist
Externí odkaz:
http://arxiv.org/abs/1402.5168
Autor:
Haut, T. S., Beylkin, G.
The need to compute small con-eigenvalues and the associated con-eigenvectors of positive-definite Cauchy matrices naturally arises when constructing rational approximations with a (near) optimally small $L^{\infty}$ error. Specifically, given a rati
Externí odkaz:
http://arxiv.org/abs/1012.3196
Autor:
Francois, M.M., Sun, A., King, W.E., Henson, N.J., Tourret, D., Bronkhorst, C.A., Carlson, N.N., Newman, C.K., Haut, T., Bakosi, J., Gibbs, J.W., Livescu, V., Vander Wiel, S.A., Clarke, A.J., Schraad, M.W., Blacker, T., Lim, H., Rodgers, T., Owen, S., Abdeljawad, F., Madison, J., Anderson, A.T., Fattebert, J-L., Ferencz, R.M., Hodge, N.E., Khairallah, S.A., Walton, O.
Publikováno v:
In Current Opinion in Solid State & Materials Science August 2017 21(4):198-206
Autor:
Beylkin, G., Haut, T. S.
Publikováno v:
Proceedings: Mathematical, Physical and Engineering Sciences, 2013 Oct 01. 469(2158), 1-18.
Externí odkaz:
https://www.jstor.org/stable/24507920
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.