Zobrazeno 1 - 10
of 32
pro vyhledávání: '"Haugland, Johanne"'
Building on previous work, we study the splitting of idempotents in the category of extensions $\mathbb{E}\operatorname{-Ext}(\mathcal{C})$ associated to a pair $(\mathcal{C},\mathbb{E})$ of an additive category and a biadditive functor to the catego
Externí odkaz:
http://arxiv.org/abs/2303.07306
Autor:
August, Jenny, Haugland, Johanne, Jacobsen, Karin M., Kvamme, Sondre, Palu, Yann, Treffinger, Hipolito
Let $\mathcal{A}$ be an abelian length category containing a $d$-cluster tilting subcategory $\mathcal{M}$. We prove that a subcategory of $\mathcal{M}$ is a $d$-torsion class if and only if it is closed under $d$-extensions and $d$-quotients. This g
Externí odkaz:
http://arxiv.org/abs/2301.10463
Publikováno v:
Math. Z. 305 (2023), no. 3, 44
Additive categories play a fundamental role in mathematics and related disciplines. Given an additive category equipped with a biadditive functor, one can construct its category of extensions, which encodes important structural information. We study
Externí odkaz:
http://arxiv.org/abs/2205.03097
We investigate the role of gentle algebras in higher homological algebra. In the first part of the paper, we show that if the module category of a gentle algebra $\Lambda$ contains a $d$-cluster tilting subcategory for some $d \geq 2$, then $\Lambda$
Externí odkaz:
http://arxiv.org/abs/2107.01045
Autor:
Haugland, Johanne, Sandøy, Mads Hustad
We establish a connection between two areas of independent interest in representation theory, namely Koszul duality and higher homological algebra. This is done through a generalization of the notion of $T$-Koszul algebras, for which we obtain a high
Externí odkaz:
http://arxiv.org/abs/2101.12743
Autor:
Haugland, Johanne
We define the Grothendieck group of an $n$-exangulated category. For $n$ odd, we show that this group shares many properties with the Grothendieck group of an exact or a triangulated category. In particular, we classify dense complete subcategories o
Externí odkaz:
http://arxiv.org/abs/1912.04328
Autor:
Haugland, Johanne
We prove that if the Auslander-Reiten triangles generate the relations for the Grothendieck group of a Hom-finite Krull-Schmidt triangulated category with a (co)generator, then the category has only finitely many isomorphism classes of indecomposable
Externí odkaz:
http://arxiv.org/abs/1904.02506
Publikováno v:
Mathematische Zeitschrift; Nov2023, Vol. 305 Issue 3, p1-37, 37p