Zobrazeno 1 - 10
of 639
pro vyhledávání: '"Hassanzadeh, S."'
Autor:
Hassanzadeh, S. Hamid
This paper studies algebraic residual intersections in rings with Serre's condition \( S_{s} \). It demonstrates that residual intersections admit free approaches i.e. perfect subideal with the same radical. This fact leads to determining a uniform u
Externí odkaz:
http://arxiv.org/abs/2409.05705
It is shown that in a Cohen-Macaulay local ring, the generic linkage of an ideal $I$ is a deformation of the arbitrary linkage of $I$. This fact does not need $I$ to be a Cohen-Macaulay ideal. The same holds for $s$-residual intersections of $I$ when
Externí odkaz:
http://arxiv.org/abs/2405.12170
In this article, we study the generalized Poincare problem from the opposite perspective, by establishing lower bounds on the degree of the vector field in terms of invariants of the variety.
Comment: 51 pages
Comment: 51 pages
Externí odkaz:
http://arxiv.org/abs/2403.09870
In this work we show that the loci of ideals in principal class, ideals of grade at least two, and ideals of maximal analytic spread are Zariski open sets in the parameter space. As an application, we show that the set of birational maps of {\it clea
Externí odkaz:
http://arxiv.org/abs/2208.12333
The main goal of this paper is to size up the minimal graded free resolution of a homogeneous ideal in terms of its generating degrees. By and large, this is too ambitious an objective. As understood, sizing up means looking closely at the two availa
Externí odkaz:
http://arxiv.org/abs/2201.09994
One proves a far-reaching upper bound for the degree of a generically finite rational map between projective varieties over a base field of arbitrary characteristic. The bound is expressed as a product of certain degrees that appear naturally by cons
Externí odkaz:
http://arxiv.org/abs/2007.13017
Publikováno v:
J. Softw. Alg. Geom. 12 (2022) 17-26
This paper describes the RationalMaps package for Macaulay2. This package provides functionality for computing several aspects of rational maps such as whether a map is birational, or a closed embedding.
Comment: 9 pages. The current version of
Comment: 9 pages. The current version of
Externí odkaz:
http://arxiv.org/abs/1908.04337
Publikováno v:
Journal of Algebra & Its Applications; Nov2024, Vol. 23 Issue 13, p1-30, 30p
This work concerns commutative algebras of the form $R=Q/I$, where $Q$ is a standard graded polynomial ring and $I$ is a homogenous ideal in $Q$. It has been proposed that when $R$ is Koszul the $i$th Betti number of $R$ over $Q$ is at most $\binom g
Externí odkaz:
http://arxiv.org/abs/1612.01558
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.