Zobrazeno 1 - 10
of 663
pro vyhledávání: '"Hashimoto, Masanori"'
Music analysis applications demand algorithms that can provide both high time and frequency resolution while minimizing noise in an already-noisy signal. Real-time analysis additionally demands low latency and low computational requirements. We propo
Externí odkaz:
http://arxiv.org/abs/2410.07982
Autor:
Zhang, Grace Li, Li, Bing, Huang, Xing, Yin, Xunzhao, Zhuo, Cheng, Hashimoto, Masanori, Schlichtmann, Ulf
In digital circuit designs, sequential components such as flip-flops are used to synchronize signal propagations. Logic computations are aligned at and thus isolated by flip-flop stages. Although this fully synchronous style can reduce design efforts
Externí odkaz:
http://arxiv.org/abs/2203.05516
Deep neural networks (DNNs) are so over-parametrized that recent research has found them to already contain a subnetwork with high accuracy at their randomly initialized state. Finding these subnetworks is a viable alternative training method to weig
Externí odkaz:
http://arxiv.org/abs/2111.12330
Publikováno v:
In Journal of Molecular Biology 1 March 2024 436(5)
Deep Neural Network has proved its potential in various perception tasks and hence become an appealing option for interpretation and data processing in security sensitive systems. However, security-sensitive systems demand not only high perception pe
Externí odkaz:
http://arxiv.org/abs/1909.04697
Autor:
Awano, Hiromitsu, Hashimoto, Masanori
Publikováno v:
In Integration March 2023 89:1-8
Autor:
Hashimoto, Masanori1,2 (AUTHOR) kmu_shinten@yahoo.co.jp, Hirata, Hirohito1 (AUTHOR), Tsukamoto, Masatsugu1 (AUTHOR), Tomohito, Yoshihara1 (AUTHOR), Mawatari, Masaaki1 (AUTHOR), Morimoto, Tadatsugu1 (AUTHOR)
Publikováno v:
Clinical Case Reports. Sep2023, Vol. 11 Issue 9, p1-6. 6p.
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Autor:
Suzuki, Hideyuki, Tanida, Jun, Hashimoto, Masanori
This open access book presents an overview of recent advances in photonic neural networks with spatiotemporal dynamics. The computing and implementation paradigms presented in this book are outcomes of interdisciplinary studies by collaborative resea
Externí odkaz:
https://library.oapen.org/handle/20.500.12657/85100
Publikováno v:
In Integration September 2020 74:19-31